Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)

Uncertainty-Aware Principal Component Analysis

Cite This

Files in this item

Checksum: MD5:ba2b3690cfdbc0538ebc76aa49b559a5

GÖRTLER, Jochen, Thilo SPINNER, Dirk STREEB, Daniel WEISKOPF, Oliver DEUSSEN, 2020. Uncertainty-Aware Principal Component Analysis. In: IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 26(1), pp. 822-831. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2019.2934812

@article{Gortler2020-01Uncer-47963, title={Uncertainty-Aware Principal Component Analysis}, year={2020}, doi={10.1109/TVCG.2019.2934812}, number={1}, volume={26}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={822--831}, author={Görtler, Jochen and Spinner, Thilo and Streeb, Dirk and Weiskopf, Daniel and Deussen, Oliver} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:title>Uncertainty-Aware Principal Component Analysis</dcterms:title> <dc:creator>Deussen, Oliver</dc:creator> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Streeb, Dirk</dc:creator> <dc:creator>Görtler, Jochen</dc:creator> <dc:creator>Weiskopf, Daniel</dc:creator> <dspace:hasBitstream rdf:resource=""/> <dc:contributor>Spinner, Thilo</dc:contributor> <dc:language>eng</dc:language> <dcterms:rights rdf:resource=""/> <dc:contributor>Görtler, Jochen</dc:contributor> <dc:date rdf:datatype="">2019-12-10T13:32:05Z</dc:date> <dc:contributor>Deussen, Oliver</dc:contributor> <dcterms:issued>2020-01</dcterms:issued> <dc:contributor>Weiskopf, Daniel</dc:contributor> <dcterms:available rdf:datatype="">2019-12-10T13:32:05Z</dcterms:available> <dc:contributor>Streeb, Dirk</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:hasPart rdf:resource=""/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA . In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach.</dcterms:abstract> <bibo:uri rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Spinner, Thilo</dc:creator> </rdf:Description> </rdf:RDF>

Downloads since Dec 10, 2019 (Information about access statistics)

Goertler_2-uopu9xoet8lq9.pdf 135

This item appears in the following Collection(s)

Search KOPS


My Account