Uncertainty-Aware Principal Component Analysis

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

GÖRTLER, Jochen, Thilo SPINNER, Dirk STREEB, Daniel WEISKOPF, Oliver DEUSSEN, 2020. Uncertainty-Aware Principal Component Analysis. In: IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 26(1), pp. 822-831. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2019.2934812

@article{Gortler2020-01Uncer-47963, title={Uncertainty-Aware Principal Component Analysis}, year={2020}, doi={10.1109/TVCG.2019.2934812}, number={1}, volume={26}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={822--831}, author={Görtler, Jochen and Spinner, Thilo and Streeb, Dirk and Weiskopf, Daniel and Deussen, Oliver} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/47963"> <dcterms:title>Uncertainty-Aware Principal Component Analysis</dcterms:title> <dc:creator>Deussen, Oliver</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Streeb, Dirk</dc:creator> <dc:creator>Görtler, Jochen</dc:creator> <dc:creator>Weiskopf, Daniel</dc:creator> <dc:contributor>Spinner, Thilo</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Görtler, Jochen</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-10T13:32:05Z</dc:date> <dc:contributor>Deussen, Oliver</dc:contributor> <dcterms:issued>2020-01</dcterms:issued> <dc:contributor>Weiskopf, Daniel</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-10T13:32:05Z</dcterms:available> <dc:contributor>Streeb, Dirk</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA . In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47963"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Spinner, Thilo</dc:creator> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account