Central dissimiliatory pathways of the thermophilic acetogen Thermacetogenium phaeum
Central dissimiliatory pathways of the thermophilic acetogen Thermacetogenium phaeum
Date
2019
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Dissertation
Publication status
Published
Published in
Abstract
Thermacetogenium phaeum, the bacterium investigated in this work, can synthesize acetate from hydrogen and carbon dioxide and can as well degrade acetate with a syntrophic partner to hydrogen and carbon dioxide. The aim of this work is to investigate the central dissimilatory pathways of this organism and to characterize their key enzymes. Therefore, Thermacetogenium phaeum was grown axenically either with methanol, formate, hydrogen/CO2 , ethanol or ethanolamine or in co-culture with Methanothermobacter thermautotrophicus with ethanol, ethanolamine or acetate. The genome of Thermacetogenium phaeum was sequenced in 2012, which enabled a proteomic comparison of the different growth conditions. The thus gained results were confirmed by enzyme assays. It was demonstrated that the Wood-Ljungdahl pathway plays a central role under all investigated growth conditions. This raises the question which enzyme systems are responsible for energy conservation. For syntrophic growth with acetate, an alternative activation of acetate via an aldehyde:ferredoxin oxidoreductase was proposed, which would not need ATP investment. As a result, the Wood-Ljungdahl pathway produces one net ATP which, however, is partly consumed in the endergonic oxidation of methyl-tetrahydrofolate with NAD+. The methylene-tetrahydrofolate reductase poses an additional barrier during growth with acetate, as this enzyme releases electrons at an electron potential of -200 mV. These electrons cannot be easily transferred to NAD+ (-320 mV). Therefore, a system was proposed in which the electrons are transferred via a heterodisulfide reductase to a quinone pool. As an electronaccepting system a putatively periplasmic formate dehydrogenase was suggested. This system needs energy input in the form of a proton gradient created by ATPase. Furthermore, degradation pathways for methanol and ethanol were proposed. Microcompartments were formed exclusively during growth with ethanolamine, which was confirmed by transmission electron microscopy. A purification protocol for microcompartments was established and the growth with ethanolamine was investigated in detail. Ethanolamine is deaminated in the microcompartments to acetaldehyde which is then disproportionated to ethanol and acetate. The degradation of ethanol occurs in the cytoplasm as during axenic growth with ethanol as substrate.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
microbiology, biochemistry, acetogens, acetate oxidation, Thermacetogenium phaeum
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
KELLER, Anja, 2019. Central dissimiliatory pathways of the thermophilic acetogen Thermacetogenium phaeum [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Keller2019Centr-47888, year={2019}, title={Central dissimiliatory pathways of the thermophilic acetogen Thermacetogenium phaeum}, author={Keller, Anja}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47888"> <dcterms:abstract xml:lang="eng">Thermacetogenium phaeum, the bacterium investigated in this work, can synthesize acetate from hydrogen and carbon dioxide and can as well degrade acetate with a syntrophic partner to hydrogen and carbon dioxide. The aim of this work is to investigate the central dissimilatory pathways of this organism and to characterize their key enzymes. Therefore, Thermacetogenium phaeum was grown axenically either with methanol, formate, hydrogen/CO2 , ethanol or ethanolamine or in co-culture with Methanothermobacter thermautotrophicus with ethanol, ethanolamine or acetate. The genome of Thermacetogenium phaeum was sequenced in 2012, which enabled a proteomic comparison of the different growth conditions. The thus gained results were confirmed by enzyme assays. It was demonstrated that the Wood-Ljungdahl pathway plays a central role under all investigated growth conditions. This raises the question which enzyme systems are responsible for energy conservation. For syntrophic growth with acetate, an alternative activation of acetate via an aldehyde:ferredoxin oxidoreductase was proposed, which would not need ATP investment. As a result, the Wood-Ljungdahl pathway produces one net ATP which, however, is partly consumed in the endergonic oxidation of methyl-tetrahydrofolate with NAD+. The methylene-tetrahydrofolate reductase poses an additional barrier during growth with acetate, as this enzyme releases electrons at an electron potential of -200 mV. These electrons cannot be easily transferred to NAD+ (-320 mV). Therefore, a system was proposed in which the electrons are transferred via a heterodisulfide reductase to a quinone pool. As an electronaccepting system a putatively periplasmic formate dehydrogenase was suggested. This system needs energy input in the form of a proton gradient created by ATPase. Furthermore, degradation pathways for methanol and ethanol were proposed. Microcompartments were formed exclusively during growth with ethanolamine, which was confirmed by transmission electron microscopy. A purification protocol for microcompartments was established and the growth with ethanolamine was investigated in detail. Ethanolamine is deaminated in the microcompartments to acetaldehyde which is then disproportionated to ethanol and acetate. The degradation of ethanol occurs in the cytoplasm as during axenic growth with ethanol as substrate.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47888/3/Mickan_2-52emmjq62b53.pdf"/> <dc:creator>Keller, Anja</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Keller, Anja</dc:contributor> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47888"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-09T08:59:06Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-09T08:59:06Z</dcterms:available> <dcterms:issued>2019</dcterms:issued> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47888/3/Mickan_2-52emmjq62b53.pdf"/> <dcterms:title>Central dissimiliatory pathways of the thermophilic acetogen Thermacetogenium phaeum</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
November 22, 2019
University note
Konstanz, Univ., Doctoral dissertation, 2019
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes