Generalized thermoelastic plates : frequency analysis

Cite This

Files in this item

Checksum: MD5:a1a25e81a26d37814fc97ce56a0ae1f3

FISCHER, Lisa, 2019. Generalized thermoelastic plates : frequency analysis

@techreport{Fischer2019Gener-47819, series={Konstanzer Schriften in Mathematik}, title={Generalized thermoelastic plates : frequency analysis}, year={2019}, number={387}, author={Fischer, Lisa} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/47819"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47819/3/Fischer_2-zidgghbt0hag2.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47819/3/Fischer_2-zidgghbt0hag2.pdf"/> <dcterms:title>Generalized thermoelastic plates : frequency analysis</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47819"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Fischer, Lisa</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-04T09:42:58Z</dc:date> <dcterms:issued>2019</dcterms:issued> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dcterms:abstract xml:lang="eng">We analyse coupled systems of thermoelastic type given in a general abstract form. We consider a self-adjoint, non-negative operator A on a Hilbert space such that 0 ∈ σ(A). In applications this setting belongs to problems in the whole space case or in exterior domains. Heat conduction is modelled with Fourier's law of heat conduction. In addition we take into consideration an inertial term. A complete picture of the region of smoothing and also the region of regularity loss for the arising parameters is given.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-04T09:42:58Z</dcterms:available> <dc:contributor>Fischer, Lisa</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Dec 4, 2019 (Information about access statistics)

Fischer_2-zidgghbt0hag2.pdf 23

This item appears in the following Collection(s)

Search KOPS


Browse

My Account