Back-mapping based sampling : Coarse grained free energy landscapes as a guideline for atomistic exploration

Lade...
Vorschaubild
Dateien
Hunkler_2-1gl7hyvmbrto44.pdf
Hunkler_2-1gl7hyvmbrto44.pdfGröße: 4.7 MBDownloads: 230
Datum
2019
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
The Journal of Chemical Physics. 2019, 151(15), 154102. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.5115398
Zusammenfassung

One ongoing topic of research in MD simulations is how to enable sampling to chemically and biologically relevant time scales. We address this question by introducing a back-mapping based sampling (BMBS) that combines multiple aspects of different sampling techniques. BMBS uses coarse grained (CG) free energy surfaces (FESs) and dimensionality reduction to initiate new atomistic simulations. These new simulations are started from atomistic conformations that were back-mapped from CG points all over the FES in order to sample the entire accessible phase space as fast as possible. In the context of BMBS, we address relevant back-mapping related questions like where to start the back-mapping from and how to judge the atomistic ensemble that results from the BMBS. The latter is done with the use of the earth mover’s distance, which allows us to quantitatively compare distributions of CG and atomistic ensembles. By using this metric, we can also show that the BMBS is able to correct inaccuracies of the CG model. In this paper, BMBS is applied to a just recently introduced neural network (NN) based approach for a radical coarse graining to predict free energy surfaces for oligopeptides. The BMBS scheme back-maps these FESs to the atomistic scale, justifying and complementing the proposed NN based CG approach. The efficiency benefit of the algorithm scales with the length of the oligomer. Already for the heptamers, the algorithm is about one order of magnitude faster in sampling compared to a standard MD simulation.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
540 Chemie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HUNKLER, Simon, Tobias LEMKE, Christine PETER, Oleksandra KUKHARENKO, 2019. Back-mapping based sampling : Coarse grained free energy landscapes as a guideline for atomistic exploration. In: The Journal of Chemical Physics. 2019, 151(15), 154102. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.5115398
BibTex
@article{Hunkler2019-10-21Backm-47294,
  year={2019},
  doi={10.1063/1.5115398},
  title={Back-mapping based sampling : Coarse grained free energy landscapes as a guideline for atomistic exploration},
  number={15},
  volume={151},
  issn={0021-9606},
  journal={The Journal of Chemical Physics},
  author={Hunkler, Simon and Lemke, Tobias and Peter, Christine and Kukharenko, Oleksandra},
  note={Article Number: 154102}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47294">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47294"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Hunkler, Simon</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Kukharenko, Oleksandra</dc:creator>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2019-10-21</dcterms:issued>
    <dc:contributor>Kukharenko, Oleksandra</dc:contributor>
    <dc:contributor>Lemke, Tobias</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-23T10:27:58Z</dcterms:available>
    <dcterms:title>Back-mapping based sampling : Coarse grained free energy landscapes as a guideline for atomistic exploration</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-23T10:27:58Z</dc:date>
    <dc:contributor>Hunkler, Simon</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47294/1/Hunkler_2-1gl7hyvmbrto44.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47294/1/Hunkler_2-1gl7hyvmbrto44.pdf"/>
    <dc:creator>Lemke, Tobias</dc:creator>
    <dc:creator>Peter, Christine</dc:creator>
    <dc:contributor>Peter, Christine</dc:contributor>
    <dcterms:abstract xml:lang="eng">One ongoing topic of research in MD simulations is how to enable sampling to chemically and biologically relevant time scales. We address this question by introducing a back-mapping based sampling (BMBS) that combines multiple aspects of different sampling techniques. BMBS uses coarse grained (CG) free energy surfaces (FESs) and dimensionality reduction to initiate new atomistic simulations. These new simulations are started from atomistic conformations that were back-mapped from CG points all over the FES in order to sample the entire accessible phase space as fast as possible. In the context of BMBS, we address relevant back-mapping related questions like where to start the back-mapping from and how to judge the atomistic ensemble that results from the BMBS. The latter is done with the use of the earth mover’s distance, which allows us to quantitatively compare distributions of CG and atomistic ensembles. By using this metric, we can also show that the BMBS is able to correct inaccuracies of the CG model. In this paper, BMBS is applied to a just recently introduced neural network (NN) based approach for a radical coarse graining to predict free energy surfaces for oligopeptides. The BMBS scheme back-maps these FESs to the atomistic scale, justifying and complementing the proposed NN based CG approach. The efficiency benefit of the algorithm scales with the length of the oligomer. Already for the heptamers, the algorithm is about one order of magnitude faster in sampling compared to a standard MD simulation.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen