Mean curvature flow in asymptotically flat product spacetimes

Cite This

Files in this item

Checksum: MD5:13d91dbf576e424ad1e690dd60ff8dce

KRÖNCKE, Klaus, Oliver LINDBLAD PETERSEN, Felix LUBBE, Tobias MARXEN, Wolfgang MAURER, Wolfgang MEISER, Oliver C. SCHNÜRER, Áron SZABÓ, Boris VERTMAN, 2021. Mean curvature flow in asymptotically flat product spacetimes. In: The Journal of Geometric Analysis. Springer. 31, pp. 5451-5479. ISSN 1050-6926. eISSN 1559-002X. Available under: doi: 10.1007/s12220-020-00486-z

@article{Kroncke2021curva-47071, title={Mean curvature flow in asymptotically flat product spacetimes}, year={2021}, doi={10.1007/s12220-020-00486-z}, volume={31}, issn={1050-6926}, journal={The Journal of Geometric Analysis}, pages={5451--5479}, author={Kröncke, Klaus and Lindblad Petersen, Oliver and Lubbe, Felix and Marxen, Tobias and Maurer, Wolfgang and Meiser, Wolfgang and Schnürer, Oliver C. and Szabó, Áron and Vertman, Boris} }

Lubbe, Felix Meiser, Wolfgang Schnürer, Oliver C. 2021 2019-09-27T12:56:27Z Kröncke, Klaus Maurer, Wolfgang Marxen, Tobias Vertman, Boris Lubbe, Felix Marxen, Tobias eng Kröncke, Klaus Szabó, Áron Szabó, Áron Mean curvature flow in asymptotically flat product spacetimes 2019-09-27T12:56:27Z We consider the long-time behaviour of the mean curvature flow of spacelike hypersurfaces in the Lorentzian product manifold M×R, where M is asymptotically flat. If the initial hypersurface F<sub>0</sub>⊂M×R is uniformly spacelike and asymptotic to M×{s} for some s∈R at infinity, we show that the mean curvature flow starting at F<sub>0</sub> exists for all times and converges uniformly to M×{s} as t→∞. Lindblad Petersen, Oliver Vertman, Boris Meiser, Wolfgang Schnürer, Oliver C. Maurer, Wolfgang terms-of-use Lindblad Petersen, Oliver

Downloads since Sep 27, 2019 (Information about access statistics)

Kroencke_2-1ksioqejbun1a8.pdf 36

This item appears in the following Collection(s)

Search KOPS


Browse

My Account