Type of Publication: | Journal article |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-td5ntzhiqs1a5 |
Author: | Mondal, Ritwik; Donges, Andreas; Ritzmann, Ulrike; Oppeneer, Peter M.; Nowak, Ulrich |
Year of publication: | 2019 |
Published in: | Physical Review B ; 100 (2019), 6. - 060409. - ISSN 2469-9950. - eISSN 2469-9969 |
DOI (citable link): | https://dx.doi.org/10.1103/PhysRevB.100.060409 |
Summary: |
Efficient manipulation of magnetization at ultrashort timescales is of particular interest for future technology. Here, we numerically investigate the influence of the so-called field-derivative torque, which was derived earlier based on relativistic Dirac theory [R. Mondal et al., Phys. Rev. B 94, 144419 (2016)], on the spin dynamics triggered by ultrashort laser pulses. We find that only considering the THz Zeeman field can underestimate the spin excitation in antiferromagnetic oxide systems such as, e.g., NiO and CoO. However, accounting for both the THz Zeeman torque and the field-derivative torque, the amplitude of the spin excitation increases significantly. Studying the damping dependence of the field-derivative torque we observe larger effects for materials having larger damping constants.
|
Subject (DDC): | 530 Physics |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
Refereed: | Yes |
MONDAL, Ritwik, Andreas DONGES, Ulrike RITZMANN, Peter M. OPPENEER, Ulrich NOWAK, 2019. Terahertz spin dynamics driven by a field-derivative torque. In: Physical Review B. 100(6), 060409. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.100.060409
@article{Mondal2019-08-23Terah-47002, title={Terahertz spin dynamics driven by a field-derivative torque}, year={2019}, doi={10.1103/PhysRevB.100.060409}, number={6}, volume={100}, issn={2469-9950}, journal={Physical Review B}, author={Mondal, Ritwik and Donges, Andreas and Ritzmann, Ulrike and Oppeneer, Peter M. and Nowak, Ulrich}, note={Article Number: 060409} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/47002"> <dcterms:issued>2019-08-23</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47002/1/Mondal_2-td5ntzhiqs1a5.pdf"/> <dc:contributor>Mondal, Ritwik</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Oppeneer, Peter M.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-20T09:45:28Z</dc:date> <dc:contributor>Donges, Andreas</dc:contributor> <dc:contributor>Ritzmann, Ulrike</dc:contributor> <dc:contributor>Nowak, Ulrich</dc:contributor> <dc:creator>Donges, Andreas</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-20T09:45:28Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47002/1/Mondal_2-td5ntzhiqs1a5.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">Efficient manipulation of magnetization at ultrashort timescales is of particular interest for future technology. Here, we numerically investigate the influence of the so-called field-derivative torque, which was derived earlier based on relativistic Dirac theory [R. Mondal et al., Phys. Rev. B 94, 144419 (2016)], on the spin dynamics triggered by ultrashort laser pulses. We find that only considering the THz Zeeman field can underestimate the spin excitation in antiferromagnetic oxide systems such as, e.g., NiO and CoO. However, accounting for both the THz Zeeman torque and the field-derivative torque, the amplitude of the spin excitation increases significantly. Studying the damping dependence of the field-derivative torque we observe larger effects for materials having larger damping constants.</dcterms:abstract> <dc:creator>Nowak, Ulrich</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Terahertz spin dynamics driven by a field-derivative torque</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47002"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Oppeneer, Peter M.</dc:creator> <dc:creator>Mondal, Ritwik</dc:creator> <dc:creator>Ritzmann, Ulrike</dc:creator> </rdf:Description> </rdf:RDF>
Mondal_2-td5ntzhiqs1a5.pdf | 139 |