Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können am Montag, 6.2. und Dienstag, 7.2. keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted on Monday, Feb. 6 and Tuesday, Feb. 7.)
Type of Publication: | Contribution to a conference collection |
Publication status: | Published |
Author: | Li, Jai; Brugere, Ivan; Ziebart, Brian; Berger-Wolf, Tanya; Crofoot, Margaret; Farine, Damien R. |
Year of publication: | 2015 |
Conference: | Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, Jan 25, 2015 - Jan 26, 2015, Austin, TX, USA |
Published in: | Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. - Menlo Park, CA, USA : AAAI Publications, 2015. - pp. 25-32 |
URL of original publication: | https://www.aaai.org/ocs/index.php/WS/AAAIW15/paper/viewPaper/10199, Last access on May 23, 2019 |
Summary: |
How can knowing the location of my friends be used to more accurately predict my location? This paper explores socially-aware location prediction under a particularly challenging setting where the underlying interactions and social network are unknown and must be inferred over continuous spatiotemporal data. Our method samples inferred network topology using a linear regression model to predict future individual locations. We present an in-depth empirical study comparing different network models and network sampling regimes under a bootstrapped sampling baseline. Furthermore, our qualitative analysis demonstrates the value of social information in population mobility modeling under our application’s challenges.
|
Subject (DDC): | 570 Biosciences, Biology |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
LI, Jai, Ivan BRUGERE, Brian ZIEBART, Tanya BERGER-WOLF, Margaret CROFOOT, Damien R. FARINE, 2015. Social Information Improves Location Prediction in the Wild. Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin, TX, USA, Jan 25, 2015 - Jan 26, 2015. In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. Menlo Park, CA, USA:AAAI Publications, pp. 25-32
@inproceedings{Li2015Socia-46641, title={Social Information Improves Location Prediction in the Wild}, url={https://www.aaai.org/ocs/index.php/WS/AAAIW15/paper/viewPaper/10199}, year={2015}, address={Menlo Park, CA, USA}, publisher={AAAI Publications}, booktitle={Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence}, pages={25--32}, author={Li, Jai and Brugere, Ivan and Ziebart, Brian and Berger-Wolf, Tanya and Crofoot, Margaret and Farine, Damien R.} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/46641"> <dc:creator>Ziebart, Brian</dc:creator> <dc:creator>Brugere, Ivan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:creator>Farine, Damien R.</dc:creator> <dc:contributor>Farine, Damien R.</dc:contributor> <dc:creator>Crofoot, Margaret</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Li, Jai</dc:creator> <dcterms:issued>2015</dcterms:issued> <dc:contributor>Brugere, Ivan</dc:contributor> <dc:contributor>Ziebart, Brian</dc:contributor> <dc:contributor>Crofoot, Margaret</dc:contributor> <dc:creator>Berger-Wolf, Tanya</dc:creator> <dcterms:title>Social Information Improves Location Prediction in the Wild</dcterms:title> <dcterms:abstract xml:lang="eng">How can knowing the location of my friends be used to more accurately predict my location? This paper explores socially-aware location prediction under a particularly challenging setting where the underlying interactions and social network are unknown and must be inferred over continuous spatiotemporal data. Our method samples inferred network topology using a linear regression model to predict future individual locations. We present an in-depth empirical study comparing different network models and network sampling regimes under a bootstrapped sampling baseline. Furthermore, our qualitative analysis demonstrates the value of social information in population mobility modeling under our application’s challenges.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:contributor>Berger-Wolf, Tanya</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46641"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-07T10:30:20Z</dcterms:available> <dc:contributor>Li, Jai</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-07T10:30:20Z</dc:date> </rdf:Description> </rdf:RDF>