Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method

Thumbnail Image
Date
2019
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Preprint
Publication status
Published
Published in
Abstract
In the present article convex multiobjective optimization problems with an arbitrary number of cost functions are considered. Since the weighted sum method has some deficiencies when it comes to approximating the Pareto front equidistantly, the Euclidean reference point method is investigated. However, for this method it is not clear how to choose reference points, i.e., the parameters in the scalarization function, guaranteeing a complete approximation of the Pareto front in the case of more than two cost functions. It is shown that by hierarchically solving subproblems of the original problem, it is possible to get a characterization of these reference points which is also numerically applicable independent of the number of cost functions. The resulting algorithm can thus be used for an arbitrary number of cost functions, which is shown in numerical tests for up to four cost functions.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Convex multiobjective optimization, Pareto front, weighted sum method, Euclidean reference point method, hierarchical algorithm
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BANHOLZER, Stefan, Stefan VOLKWEIN, 2019. Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method
BibTex
@unpublished{Banholzer2019Hiera-46601,
  year={2019},
  title={Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method},
  author={Banholzer, Stefan and Volkwein, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46601">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">In the present article convex multiobjective optimization problems with an arbitrary number of cost functions are considered. Since the weighted sum method has some deficiencies when it comes to approximating the Pareto front equidistantly, the Euclidean reference point method is investigated. However, for this method it is not clear how to choose reference points, i.e., the parameters in the scalarization function, guaranteeing a complete approximation of the Pareto front in the case of more than two cost functions. It is shown that by hierarchically solving subproblems of the original problem, it is possible to get a characterization of these reference points which is also numerically applicable independent of the number of cost functions. The resulting algorithm can thus be used for an arbitrary number of cost functions, which is shown in numerical tests for up to four cost functions.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
    <dc:creator>Banholzer, Stefan</dc:creator>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-02T10:59:40Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46601/3/Banholzer_2-xd965ctqkqax3.pdf"/>
    <dc:contributor>Banholzer, Stefan</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-02T10:59:40Z</dcterms:available>
    <dcterms:title>Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46601/3/Banholzer_2-xd965ctqkqax3.pdf"/>
    <dcterms:issued>2019</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46601"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed