Controlled Preparation of Nanoparticle Gradient Materials by Diffusion

Lade...
Vorschaubild
Dateien
Spinnrock_2-ju1y4hheztxa7.pdf
Spinnrock_2-ju1y4hheztxa7.pdfGröße: 997.78 KBDownloads: 362
Datum
2019
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Angaben zur Forschungsförderung (Freitext)
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Nanomaterials. 2019, 9(7), 988. eISSN 2079-4991. Available under: doi: 10.3390/nano9070988
Zusammenfassung

This article describes a new way to analyze data from the interpersonal circumplex (IPC) for interpersonal behavior. Instead of analyzing Agency and Communion separately or analyzing the IPC’s octants, we propose using a circular regression model that allows us to investigate effects on a blend of Agency and Communion. The proposed circular model is called a projected normal (PN) model. We illustrate the use of a PN mixed-effects model on three repeated measures data sets with circumplex measurements from interpersonal and educational psychology. This model allows us to detect different types of patterns in the data and provides a more valid analysis of circumplex data. In addition to being able to investigate the effect on the location (mean) of scores on the IPC, we can also investigate effects on the spread (variance) of scores on the IPC. We also introduce new tools that help interpret the fixed and random effects of PN models.Nanoparticle gradient materials combine a concentration gradient of nanoparticles with a macroscopic matrix. This way, specific properties of nanoscale matter can be transferred to bulk materials. These materials have great potential for applications in optics, electronics, and sensors. However, it is challenging to monitor the formation of such gradient materials and prepare them in a controlled manner. In this study, we present a novel universal approach for the preparation of this material class using diffusion in an analytical ultracentrifuge. The nanoparticles diffuse into a molten thermoreversible polymer gel and the process is observed in real-time by measuring the particle concentrations along the length of the material to establish a systematic understanding of the gradient generation process. We extract the apparent diffusion coefficients using Fick’s second law of diffusion and simulate the diffusion behavior of the particles. When the desired concentration gradient is achieved the polymer solution is cooled down to fix the concentration gradient in the formed gel phase and obtain a nanoparticle gradient material with the desired property gradient. Gradients of semiconductor nanoparticles with different sizes, fluorescent silica particles, and spherical superparamagnetic iron oxide nanoparticles are presented. This method can be used to produce tailored nanoparticle gradient materials with a broad range of physical properties in a simple and predictable way.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
540 Chemie
Schlagwörter
composites, diffusion, functional materials, gradients, nanoparticles
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SPINNROCK, Andreas, Max MARTENS, Florian ENDERS, Klaus BOLDT, Helmut CÖLFEN, 2019. Controlled Preparation of Nanoparticle Gradient Materials by Diffusion. In: Nanomaterials. 2019, 9(7), 988. eISSN 2079-4991. Available under: doi: 10.3390/nano9070988
BibTex
@article{Spinnrock2019-07-09Contr-46537,
  year={2019},
  doi={10.3390/nano9070988},
  title={Controlled Preparation of Nanoparticle Gradient Materials by Diffusion},
  number={7},
  volume={9},
  journal={Nanomaterials},
  author={Spinnrock, Andreas and Martens, Max and Enders, Florian and Boldt, Klaus and Cölfen, Helmut},
  note={Article Number: 988}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46537">
    <dc:contributor>Spinnrock, Andreas</dc:contributor>
    <dc:creator>Boldt, Klaus</dc:creator>
    <dcterms:abstract xml:lang="eng">This article describes a new way to analyze data from the interpersonal circumplex (IPC) for interpersonal behavior. Instead of analyzing Agency and Communion separately or analyzing the IPC’s octants, we propose using a circular regression model that allows us to investigate effects on a blend of Agency and Communion. The proposed circular model is called a projected normal (PN) model. We illustrate the use of a PN mixed-effects model on three repeated measures data sets with circumplex measurements from interpersonal and educational psychology. This model allows us to detect different types of patterns in the data and provides a more valid analysis of circumplex data. In addition to being able to investigate the effect on the location (mean) of scores on the IPC, we can also investigate effects on the spread (variance) of scores on the IPC. We also introduce new tools that help interpret the fixed and random effects of PN models.Nanoparticle gradient materials combine a concentration gradient of nanoparticles with a macroscopic matrix. This way, specific properties of nanoscale matter can be transferred to bulk materials. These materials have great potential for applications in optics, electronics, and sensors. However, it is challenging to monitor the formation of such gradient materials and prepare them in a controlled manner. In this study, we present a novel universal approach for the preparation of this material class using diffusion in an analytical ultracentrifuge. The nanoparticles diffuse into a molten thermoreversible polymer gel and the process is observed in real-time by measuring the particle concentrations along the length of the material to establish a systematic understanding of the gradient generation process. We extract the apparent diffusion coefficients using Fick’s second law of diffusion and simulate the diffusion behavior of the particles. When the desired concentration gradient is achieved the polymer solution is cooled down to fix the concentration gradient in the formed gel phase and obtain a nanoparticle gradient material with the desired property gradient. Gradients of semiconductor nanoparticles with different sizes, fluorescent silica particles, and spherical superparamagnetic iron oxide nanoparticles are presented. This method can be used to produce tailored nanoparticle gradient materials with a broad range of physical properties in a simple and predictable way.</dcterms:abstract>
    <dc:contributor>Enders, Florian</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46537/3/Spinnrock_2-ju1y4hheztxa7.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46537/3/Spinnrock_2-ju1y4hheztxa7.pdf"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-26T08:41:58Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46537"/>
    <dc:contributor>Cölfen, Helmut</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:issued>2019-07-09</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-26T08:41:58Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Boldt, Klaus</dc:contributor>
    <dc:creator>Enders, Florian</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:contributor>Martens, Max</dc:contributor>
    <dc:creator>Cölfen, Helmut</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:title>Controlled Preparation of Nanoparticle Gradient Materials by Diffusion</dcterms:title>
    <dc:creator>Martens, Max</dc:creator>
    <dc:creator>Spinnrock, Andreas</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen