Controlled Preparation of Nanoparticle Gradient Materials by Diffusion

Cite This

Files in this item

Checksum: MD5:56797f08fa02c09f50b1830a08e6d876

SPINNROCK, Andreas, Max MARTENS, Florian ENDERS, Klaus BOLDT, Helmut CÖLFEN, 2019. Controlled Preparation of Nanoparticle Gradient Materials by Diffusion. In: Nanomaterials. 9(7), 988. eISSN 2079-4991. Available under: doi: 10.3390/nano9070988

@article{Spinnrock2019-07-09Contr-46537, title={Controlled Preparation of Nanoparticle Gradient Materials by Diffusion}, year={2019}, doi={10.3390/nano9070988}, number={7}, volume={9}, journal={Nanomaterials}, author={Spinnrock, Andreas and Martens, Max and Enders, Florian and Boldt, Klaus and Cölfen, Helmut}, note={Article Number: 988} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Boldt, Klaus</dc:contributor> <dcterms:available rdf:datatype="">2019-07-26T08:41:58Z</dcterms:available> <dc:contributor>Cölfen, Helmut</dc:contributor> <dcterms:isPartOf rdf:resource=""/> <dcterms:title>Controlled Preparation of Nanoparticle Gradient Materials by Diffusion</dcterms:title> <dc:creator>Spinnrock, Andreas</dc:creator> <dc:creator>Boldt, Klaus</dc:creator> <dc:language>eng</dc:language> <dc:creator>Cölfen, Helmut</dc:creator> <dc:creator>Enders, Florian</dc:creator> <dcterms:abstract xml:lang="eng">This article describes a new way to analyze data from the interpersonal circumplex (IPC) for interpersonal behavior. Instead of analyzing Agency and Communion separately or analyzing the IPC’s octants, we propose using a circular regression model that allows us to investigate effects on a blend of Agency and Communion. The proposed circular model is called a projected normal (PN) model. We illustrate the use of a PN mixed-effects model on three repeated measures data sets with circumplex measurements from interpersonal and educational psychology. This model allows us to detect different types of patterns in the data and provides a more valid analysis of circumplex data. In addition to being able to investigate the effect on the location (mean) of scores on the IPC, we can also investigate effects on the spread (variance) of scores on the IPC. We also introduce new tools that help interpret the fixed and random effects of PN models.Nanoparticle gradient materials combine a concentration gradient of nanoparticles with a macroscopic matrix. This way, specific properties of nanoscale matter can be transferred to bulk materials. These materials have great potential for applications in optics, electronics, and sensors. However, it is challenging to monitor the formation of such gradient materials and prepare them in a controlled manner. In this study, we present a novel universal approach for the preparation of this material class using diffusion in an analytical ultracentrifuge. The nanoparticles diffuse into a molten thermoreversible polymer gel and the process is observed in real-time by measuring the particle concentrations along the length of the material to establish a systematic understanding of the gradient generation process. We extract the apparent diffusion coefficients using Fick’s second law of diffusion and simulate the diffusion behavior of the particles. When the desired concentration gradient is achieved the polymer solution is cooled down to fix the concentration gradient in the formed gel phase and obtain a nanoparticle gradient material with the desired property gradient. Gradients of semiconductor nanoparticles with different sizes, fluorescent silica particles, and spherical superparamagnetic iron oxide nanoparticles are presented. This method can be used to produce tailored nanoparticle gradient materials with a broad range of physical properties in a simple and predictable way.</dcterms:abstract> <dc:date rdf:datatype="">2019-07-26T08:41:58Z</dc:date> <dc:contributor>Enders, Florian</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Martens, Max</dc:creator> <dcterms:issued>2019-07-09</dcterms:issued> <dcterms:hasPart rdf:resource=""/> <dc:contributor>Martens, Max</dc:contributor> <dspace:hasBitstream rdf:resource=""/> <dc:contributor>Spinnrock, Andreas</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:rights rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource=""/> </rdf:Description> </rdf:RDF>

Downloads since Jul 26, 2019 (Information about access statistics)

Spinnrock_2-ju1y4hheztxa7.pdf 316

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


My Account