SUIKER : Quantification of antigens in cell organelles, neurites and cellular sub-structures by imaging

Thumbnail Image
Date
2019
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
681002
825759
Project
EUToxRisk21
ENDpoiNTs
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Alternatives to Animal Experimentation : ALTEX ; 36 (2019), 3. - pp. 518-520. - ISSN 1868-596X. - eISSN 1868-8551
Abstract
Quantification of fluorescence colocalization and intensity of strongly overlapping cells, e.g., neuronal cultures, is challenging for programs that use image segmentation to identify cells as individual objects. Moreover, learning to use and apply one of the large imaging packages can be very time- and/or resource-demanding. Therefore, we developed the free and highly interactive image analysis program SUIKER (program for SUperImposing KEy Regions) that quantifies colocalization of different proteins or other features over an entire image field. The software allows definition of cellular subareas by subtraction ("punching out") of structures identified in one channel from structures in a second channel. This allows, e.g., definition of neurites without cell bodies. Moreover, normalization to live or total cell numbers is possible. Providing a detailed manual that contains image analysis examples, we demonstrate how the program uses a combination of colocalization information and fluorescence intensity to quantify carbohydrate-specific stains on neurites. SUIKER can import any multichannel histology or cell culture image, builds on user-guided threshold setting, batch processes large image stacks, and exports all data (including the settings, results and metadata) in flexible formats to be used in Excel.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690KARREMAN, Christiaan, Petra CHOVANCOVA, Marcel LEIST, 2019. SUIKER : Quantification of antigens in cell organelles, neurites and cellular sub-structures by imaging. In: Alternatives to Animal Experimentation : ALTEX. 36(3), pp. 518-520. ISSN 1868-596X. eISSN 1868-8551. Available under: doi: 10.14573/altex.1906251
BibTex
@article{Karreman2019SUIKE-46485,
  year={2019},
  doi={10.14573/altex.1906251},
  title={SUIKER : Quantification of antigens in cell organelles, neurites and cellular sub-structures by imaging},
  number={3},
  volume={36},
  issn={1868-596X},
  journal={Alternatives to Animal Experimentation : ALTEX},
  pages={518--520},
  author={Karreman, Christiaan and Chovancova, Petra and Leist, Marcel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46485">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Karreman, Christiaan</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-23T13:08:56Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46485/1/Karreman_2-1pdwyo124up2c6.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46485/1/Karreman_2-1pdwyo124up2c6.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46485"/>
    <dc:creator>Chovancova, Petra</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-23T13:08:56Z</dcterms:available>
    <dcterms:title>SUIKER : Quantification of antigens in cell organelles, neurites and cellular sub-structures by imaging</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Chovancova, Petra</dc:contributor>
    <dc:creator>Karreman, Christiaan</dc:creator>
    <dcterms:abstract xml:lang="eng">Quantification of fluorescence colocalization and intensity of strongly overlapping cells, e.g., neuronal cultures, is challenging for programs that use image segmentation to identify cells as individual objects. Moreover, learning to use and apply one of the large imaging packages can be very time- and/or resource-demanding. Therefore, we developed the free and highly interactive image analysis program SUIKER (program for SUperImposing KEy Regions) that quantifies colocalization of different proteins or other features over an entire image field. The software allows definition of cellular subareas by subtraction ("punching out") of structures identified in one channel from structures in a second channel. This allows, e.g., definition of neurites without cell bodies. Moreover, normalization to live or total cell numbers is possible. Providing a detailed manual that contains image analysis examples, we demonstrate how the program uses a combination of colocalization information and fluorescence intensity to quantify carbohydrate-specific stains on neurites. SUIKER can import any multichannel histology or cell culture image, builds on user-guided threshold setting, batch processes large image stacks, and exports all data (including the settings, results and metadata) in flexible formats to be used in Excel.</dcterms:abstract>
    <dcterms:issued>2019</dcterms:issued>
    <dc:creator>Leist, Marcel</dc:creator>
    <dc:contributor>Leist, Marcel</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes