Type of Publication: | Contribution to a conference collection |
Publication status: | Accepted |
Author: | Polk, Thomas; Jaeckle, Dominik; Haeußler, Johannes; Yang, Jing |
Year of publication: | 2019 |
Conference: | IEEE Visual Analytics Science and Technology (VAST), IEEE Information Visualization (InfoVis), and IEEE Scientific Visualization (SciVis) 2019, Oct 20, 2019 - Oct 25, 2019, Vancouver, BC, Canada |
Summary: |
Tennis players and coaches of all proficiency levels seek to understand and improve their play. Summary statistics alone are inadequate to provide the insights players need to improve their games. Spatio-temporal data capturing player and ball movements is likely to provide the actionable insights needed to identify player strengths, weaknesses, and strategies. To fully utilize this spatio-temporal data, we need to integrate it with domain-relevant context meta-data. In this paper, we propose CourtTime, a novel approach to perform data-driven visual analysis of individual tennis matches. Our visual approach introduces a novel visual metaphor, namely 1-D Space-Time Charts that enable the analysis of single points at a glance based on small multiples. We also employ user-driven sorting and clustering techniques and a layout technique that aligns the last few shots in a point to facilitate shot pattern discovery. We discuss the usefulness of CourtTime via an extensive case study and report on feedback from an amateur tennis player and three tennis coaches.
|
Subject (DDC): | 004 Computer Science |
Keywords: | Visual analytics, tennis analysis, sports analytics, spatio-temporal analysis |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
POLK, Thomas, Dominik JAECKLE, Johannes HAEUSSLER, Jing YANG, 2019. CourtTime : Generating Actionable Insights into Tennis Matches Using Visual Analytics. IEEE Visual Analytics Science and Technology (VAST), IEEE Information Visualization (InfoVis), and IEEE Scientific Visualization (SciVis) 2019. Vancouver, BC, Canada, Oct 20, 2019 - Oct 25, 2019
@inproceedings{Polk2019Court-46446, title={CourtTime : Generating Actionable Insights into Tennis Matches Using Visual Analytics}, year={2019}, author={Polk, Thomas and Jaeckle, Dominik and Haeußler, Johannes and Yang, Jing} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/46446"> <dc:contributor>Polk, Thomas</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:title>CourtTime : Generating Actionable Insights into Tennis Matches Using Visual Analytics</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:creator>Polk, Thomas</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46446"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">Tennis players and coaches of all proficiency levels seek to understand and improve their play. Summary statistics alone are inadequate to provide the insights players need to improve their games. Spatio-temporal data capturing player and ball movements is likely to provide the actionable insights needed to identify player strengths, weaknesses, and strategies. To fully utilize this spatio-temporal data, we need to integrate it with domain-relevant context meta-data. In this paper, we propose CourtTime, a novel approach to perform data-driven visual analysis of individual tennis matches. Our visual approach introduces a novel visual metaphor, namely 1-D Space-Time Charts that enable the analysis of single points at a glance based on small multiples. We also employ user-driven sorting and clustering techniques and a layout technique that aligns the last few shots in a point to facilitate shot pattern discovery. We discuss the usefulness of CourtTime via an extensive case study and report on feedback from an amateur tennis player and three tennis coaches.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46446/1/CourtTime__Generating_Actionable_Insights_into_Amateur_Tennis_Matches_Using_Visual_Analytics%20%28with%20acknowledgements%29.pdf"/> <dc:contributor>Jaeckle, Dominik</dc:contributor> <dc:creator>Haeußler, Johannes</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-18T10:15:11Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-18T10:15:11Z</dcterms:available> <dc:contributor>Yang, Jing</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:creator>Jaeckle, Dominik</dc:creator> <dcterms:issued>2019</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46446/1/CourtTime__Generating_Actionable_Insights_into_Amateur_Tennis_Matches_Using_Visual_Analytics%20%28with%20acknowledgements%29.pdf"/> <dc:contributor>Haeußler, Johannes</dc:contributor> <dc:creator>Yang, Jing</dc:creator> </rdf:Description> </rdf:RDF>
CourtTime__Generating_Actionable_Insights_into_Amateur_Tennis_Matches_Using_Visual_Analytics (with acknowledgements).pdf | 348 |