Density-based label placement

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

LHUILLIER, Antoine, Mereke VAN GARDEREN, Daniel WEISKOPF, 2019. Density-based label placement. In: The Visual Computer. 35(6-8), pp. 1041-1052. ISSN 0178-2789. eISSN 1432-2315. Available under: doi: 10.1007/s00371-019-01686-7

@article{Lhuillier2019-06Densi-46338, title={Density-based label placement}, year={2019}, doi={10.1007/s00371-019-01686-7}, number={6-8}, volume={35}, issn={0178-2789}, journal={The Visual Computer}, pages={1041--1052}, author={Lhuillier, Antoine and van Garderen, Mereke and Weiskopf, Daniel} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:title>Density-based label placement</dcterms:title> <dc:contributor>Lhuillier, Antoine</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dc:creator>van Garderen, Mereke</dc:creator> <dc:creator>Lhuillier, Antoine</dc:creator> <dc:contributor>van Garderen, Mereke</dc:contributor> <dc:contributor>Weiskopf, Daniel</dc:contributor> <dc:date rdf:datatype="">2019-07-11T13:50:00Z</dc:date> <dcterms:abstract xml:lang="eng">We introduce a versatile density-based approach to label placement that aims to put labels in uncluttered areas of an underlying 2D visualization. Our novel, image-space algorithm constructs a density map by applying kernel density estimation to the input features, i.e., the locations of the points to be labeled. In order to find a suitable position for a label where it does not overlap any features or other labels, we move it following the gradient descent of this density map. This guides labels toward nearby areas of low feature density, resulting in a layout where labels are spread around feature-dense areas. The gradient descent trajectory can be used to draw curved leaders that connect the point features to their labels. Additionally, our approach supports prioritized label placement, user-defined label-to-label and label-to-feature margins, obstacle-constrained labeling, and arbitrarily shaped labels. The proposed method is conceptually simple and can easily be implemented using OpenCV and image-processing libraries.</dcterms:abstract> <dcterms:available rdf:datatype="">2019-07-11T13:50:00Z</dcterms:available> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2019-06</dcterms:issued> <dc:creator>Weiskopf, Daniel</dc:creator> <bibo:uri rdf:resource=""/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account