Spectrahedral and semidefinite representability of orbitopes

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Polar orbitopes are a rich class of orbitopes such as the symmetric and skewsymmetric Schur-Horn orbitopes, the Fan orbitopes and the tautological orbitope of the special orthogonal group. Our main result in Chapter 3.1 is to show that every polar orbitope under a connected group is a spectrahedron (Theorem 3.1.19). It follows that the polar orbitopes under connected groups are basic closed semialgebraic und their faces are exposed. Another consequence is that every polar orbitope is a spectrahedral shadow (Theorem 3.1.26). Our main result for Chapter 4 is Theorem 4.3.4. The theorem generalizes the fact, that every orbitope under the torus is a spectrahedral shadow and gives new examples of orbitopes under the bitorus, which are spectrahedra. Chapter 5.1 is concerned with finding orbitopes, which are not spectrahedral shadows. Our main result here, is to prove that many 30-dimensional orbitopes under the bitorus are not spectrahedral shadows (Theorem 5.2.2).

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
orbitopes, polar orbitopes, spectrahedra, spectrahedral shadows, semi-definite sets, convex, real algebraic geometry, caratheodory orbitopes
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KOBERT, Tim, 2019. Spectrahedral and semidefinite representability of orbitopes [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Kobert2019Spect-45715,
  year={2019},
  title={Spectrahedral and semidefinite representability of orbitopes},
  author={Kobert, Tim},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45715">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-24T12:55:49Z</dcterms:available>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-24T12:55:49Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <dc:contributor>Kobert, Tim</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45715"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Polar orbitopes are a rich class of orbitopes such as the symmetric and skewsymmetric Schur-Horn orbitopes, the Fan orbitopes and the tautological orbitope of the special orthogonal group. Our main result in Chapter 3.1 is to show that every polar orbitope under a connected group is a spectrahedron (Theorem 3.1.19). It follows that the polar orbitopes under connected groups are basic closed semialgebraic und their faces are exposed. Another consequence is that every polar orbitope is a spectrahedral shadow (Theorem 3.1.26). Our main result for Chapter 4 is Theorem 4.3.4. The theorem generalizes the fact, that every orbitope under the torus is a spectrahedral shadow and gives new examples of orbitopes under the bitorus, which are spectrahedra. Chapter 5.1 is concerned with finding orbitopes, which are not spectrahedral shadows. Our main result here, is to prove that many 30-dimensional orbitopes under the bitorus are not spectrahedral shadows (Theorem 5.2.2).</dcterms:abstract>
    <dc:creator>Kobert, Tim</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45715/3/Kobert_2-15qzbd2l8d9fi3.pdf"/>
    <dcterms:title>Spectrahedral and semidefinite representability of orbitopes</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45715/3/Kobert_2-15qzbd2l8d9fi3.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
December 14, 2018
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2018
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen