KOPS - The Institutional Repository of the University of Konstanz

Effective Aesthetics Prediction with Multi-level Spatially Pooled Features

Effective Aesthetics Prediction with Multi-level Spatially Pooled Features

Cite This

Files in this item

Checksum: MD5:ef2cbe7c57d84d0f75607b668b6984a6

HOSU, Vlad, Bastian GOLDLÜCKE, Dietmar SAUPE, 2019. Effective Aesthetics Prediction with Multi-level Spatially Pooled Features

@techreport{Hosu2019-04-02T12:58:12ZEffec-45609, title={Effective Aesthetics Prediction with Multi-level Spatially Pooled Features}, year={2019}, author={Hosu, Vlad and Goldlücke, Bastian and Saupe, Dietmar}, note={To appear in CVPR 2019} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/45609"> <dcterms:abstract xml:lang="eng">We propose an effective deep learning approach to aesthetics quality assessment that relies on a new type of pre-trained features, and apply it to the AVA data set, the currently largest aesthetics database. While previous approaches miss some of the information in the original images, due to taking small crops, down-scaling or warping the originals during training, we propose the first method that efficiently supports full resolution images as an input, and can be trained on variable input sizes. This allows us to significantly improve upon the state of the art, increasing the Spearman rank-order correlation coefficient (SRCC) of ground-truth mean opinion scores (MOS) from the existing best reported of 0.612 to 0.756. To achieve this performance, we extract multi-level spatially pooled (MLSP) features from all convolutional blocks of a pre-trained InceptionResNet-v2 network, and train a custom shallow Convolutional Neural Network (CNN) architecture on these new features.</dcterms:abstract> <dc:creator>Goldlücke, Bastian</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45609"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-09T13:48:49Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:issued>2019-04-02T12:58:12Z</dcterms:issued> <dc:contributor>Saupe, Dietmar</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:title>Effective Aesthetics Prediction with Multi-level Spatially Pooled Features</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Saupe, Dietmar</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45609/1/Hosu_2-amv1uzjjhj4x0.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dc:creator>Hosu, Vlad</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-09T13:48:49Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45609/1/Hosu_2-amv1uzjjhj4x0.pdf"/> <dc:contributor>Hosu, Vlad</dc:contributor> <dc:contributor>Goldlücke, Bastian</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Apr 9, 2019 (Information about access statistics)

Hosu_2-amv1uzjjhj4x0.pdf 29

This item appears in the following Collection(s)

Search KOPS


Browse

My Account