Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Contribution to a conference collection |
Publication status: | Published |
Author: | Doell, Christoph; Donohue, Sarah E.; Borgelt, Christian |
Year of publication: | 2018 |
Conference: | 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Nov 18, 2018 - Nov 21, 2018, Bangalore, India |
Published in: | Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI) / Sundaram, Suresh (ed.). - Piscataway, NJ : IEEE, 2018. - pp. 510-517. - ISBN 978-1-5386-9276-9 |
DOI (citable link): | https://dx.doi.org/10.1109/SSCI.2018.8628678 |
Summary: |
We investigate the differences in brain signals of craving smokers, non-craving smokers, and non-smokers. To this end, we use data from resting-state EEG measurements to train predictive models to distinguish these three groups. We improve the neural network models applied earlier in two ways: firstly by adding channel-wise convolutional layers, secondly by adding residual connections to the network. We further extend the validation to make it similar to a real world scenario, in which a prediction is based on all data available for this measurement. Finally, we analyze the prediction quality for each measurement individually. Our results demonstrate significant improvements.
|
Subject (DDC): | 004 Computer Science |
Keywords: | Addiction, Smoker, Craving, Residual Neural Network, EEG, Classification |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
DOELL, Christoph, Sarah E. DONOHUE, Christian BORGELT, 2018. Residual Neural Networks to Distinguish Craving Smokers, Non-craving Smokers and Non-smokers by their EEG signals. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). Bangalore, India, Nov 18, 2018 - Nov 21, 2018. In: SUNDARAM, Suresh, ed.. Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ:IEEE, pp. 510-517. ISBN 978-1-5386-9276-9. Available under: doi: 10.1109/SSCI.2018.8628678
@inproceedings{Doell2018Resid-45354, title={Residual Neural Networks to Distinguish Craving Smokers, Non-craving Smokers and Non-smokers by their EEG signals}, year={2018}, doi={10.1109/SSCI.2018.8628678}, isbn={978-1-5386-9276-9}, address={Piscataway, NJ}, publisher={IEEE}, booktitle={Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI)}, pages={510--517}, editor={Sundaram, Suresh}, author={Doell, Christoph and Donohue, Sarah E. and Borgelt, Christian} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/45354"> <dc:contributor>Doell, Christoph</dc:contributor> <dc:creator>Doell, Christoph</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Borgelt, Christian</dc:contributor> <dc:creator>Borgelt, Christian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Donohue, Sarah E.</dc:creator> <dc:contributor>Donohue, Sarah E.</dc:contributor> <dcterms:title>Residual Neural Networks to Distinguish Craving Smokers, Non-craving Smokers and Non-smokers by their EEG signals</dcterms:title> <dcterms:abstract xml:lang="eng">We investigate the differences in brain signals of craving smokers, non-craving smokers, and non-smokers. To this end, we use data from resting-state EEG measurements to train predictive models to distinguish these three groups. We improve the neural network models applied earlier in two ways: firstly by adding channel-wise convolutional layers, secondly by adding residual connections to the network. We further extend the validation to make it similar to a real world scenario, in which a prediction is based on all data available for this measurement. Finally, we analyze the prediction quality for each measurement individually. Our results demonstrate significant improvements.</dcterms:abstract> <dcterms:issued>2018</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-07T13:16:50Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45354"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-07T13:16:50Z</dcterms:available> </rdf:Description> </rdf:RDF>