KOPS - The Institutional Repository of the University of Konstanz

LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results

LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results

Cite This

Files in this item

Checksum: MD5:bbad37dea13b4615d629708a26e08752

EL-ASSADY, Mennatallah, Fabian SPERRLE, Rita SEVASTJANOVA, Michael SEDLMAIR, Daniel A. KEIM, 2018. LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results. 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Konstanz, Sep 17, 2018 - Sep 19, 2018. In: 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Piscataway, NJ:IEEE. ISBN 978-1-5386-9194-6. Available under: doi: 10.1109/BDVA.2018.8534018

@inproceedings{ElAssady2018Layer-45052, title={LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results}, year={2018}, doi={10.1109/BDVA.2018.8534018}, isbn={978-1-5386-9194-6}, address={Piscataway, NJ}, publisher={IEEE}, booktitle={2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA)}, author={El-Assady, Mennatallah and Sperrle, Fabian and Sevastjanova, Rita and Sedlmair, Michael and Keim, Daniel A.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/45052"> <dc:creator>Sedlmair, Michael</dc:creator> <dcterms:issued>2018</dcterms:issued> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:title>LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results</dcterms:title> <dc:contributor>Sedlmair, Michael</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:43:58Z</dcterms:available> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45052/1/El-Assady_2-16s2fc0eok0198.pdf"/> <dc:creator>Sevastjanova, Rita</dc:creator> <dc:contributor>Sperrle, Fabian</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45052/1/El-Assady_2-16s2fc0eok0198.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:43:58Z</dc:date> <dc:creator>Sperrle, Fabian</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Sevastjanova, Rita</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:abstract xml:lang="eng">We present LTMA, a Layered Topic Matching approach for the unsupervised comparative analysis of topic modeling results. Due to the vast number of available modeling algorithms, an efficient and effective comparison of their results is detrimental to a data- and task-driven selection of a model. LTMA automates this comparative analysis by providing topic matching based on two layers (document-overlap and keywordsimilarity), creating a novel topic-match data structure. This data structure builds a basis for model exploration and optimization, thus, allowing for an efficient evaluation of their performance in the context of a given type of text data and task. This is especially important for text types where an annotated gold standard dataset is not readily available and, therefore, quantitative evaluation methods are not applicable. We confirm the usefulness of our technique based on three use cases, namely: (1) the automatic comparative evaluation of topic models, (2) the visual exploration of topic modeling differences, and (3) the optimization of topic modeling results through combining matches.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45052"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>

Downloads since Feb 14, 2019 (Information about access statistics)

El-Assady_2-16s2fc0eok0198.pdf 10

This item appears in the following Collection(s)

Search KOPS


Browse

My Account