Visual Analytics System for Semi-automatic 4D Crime Scene Reconstruction
Lade...
Dateien
Datum
2018
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
740754
DFG-Projektnummer
Projekt
VICTORIA - Video analysis for Investigation of Criminal and Terrorist Activities
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
4th International Symposium on Big Data Visual and Immersive Analytics. 2018
Zusammenfassung
During criminal investigations, every second saved can be valuable to catch a suspect or to prevent further damage. However, sometimes the amount of evidence that needs to be investigated is so large, that it can not be processed fast enough. Especially after incidents in public, the law enforcement agencies receive a lot of video and image material from persons and surveillance cameras. Currently, all these videos are viewed manually and annotated by criminal investigators. The goal of our tool is to make this process faster by allowing the investigators to watch a combination of several videos at the same time and giving them a common spatial and temporal reference.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
4th International Symposium on Big Data Visual and Immersive Analytics, 17. Okt. 2018 - 19. Okt. 2018, Konstanz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
JENTNER, Wolfgang, Matthias KRAUS, Niklas WEILER, Timon KILIAN, Daniel A. KEIM, 2018. Visual Analytics System for Semi-automatic 4D Crime Scene Reconstruction. 4th International Symposium on Big Data Visual and Immersive Analytics. Konstanz, 17. Okt. 2018 - 19. Okt. 2018. In: 4th International Symposium on Big Data Visual and Immersive Analytics. 2018BibTex
@inproceedings{Jentner2018Visua-45039, year={2018}, title={Visual Analytics System for Semi-automatic 4D Crime Scene Reconstruction}, url={https://scibib.dbvis.de/uploadedFiles/BDVA_VICTORIA_Poster_Paper_CR.pdf}, booktitle={4th International Symposium on Big Data Visual and Immersive Analytics}, author={Jentner, Wolfgang and Kraus, Matthias and Weiler, Niklas and Kilian, Timon and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45039"> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Visual Analytics System for Semi-automatic 4D Crime Scene Reconstruction</dcterms:title> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Kraus, Matthias</dc:contributor> <dc:contributor>Jentner, Wolfgang</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45039/1/Weiler_2-13quwafcki9pl1.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45039/1/Weiler_2-13quwafcki9pl1.pdf"/> <dcterms:abstract xml:lang="eng">During criminal investigations, every second saved can be valuable to catch a suspect or to prevent further damage. However, sometimes the amount of evidence that needs to be investigated is so large, that it can not be processed fast enough. Especially after incidents in public, the law enforcement agencies receive a lot of video and image material from persons and surveillance cameras. Currently, all these videos are viewed manually and annotated by criminal investigators. The goal of our tool is to make this process faster by allowing the investigators to watch a combination of several videos at the same time and giving them a common spatial and temporal reference.</dcterms:abstract> <dc:creator>Kilian, Timon</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Kraus, Matthias</dc:creator> <dc:creator>Jentner, Wolfgang</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45039"/> <dc:contributor>Kilian, Timon</dc:contributor> <dc:contributor>Weiler, Niklas</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T13:03:53Z</dcterms:available> <dc:creator>Weiler, Niklas</dc:creator> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T13:03:53Z</dc:date> <dcterms:issued>2018</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
URL der Originalveröffentl.
Prüfdatum der URL
2019-02-14
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja