KOPS - The Institutional Repository of the University of Konstanz

SocialOcean : Visual Analysis and Characterization of Social Media Bubbles

SocialOcean : Visual Analysis and Characterization of Social Media Bubbles

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

DIEHL, Alexandra, Michael HUNDT, Johannes HÄUSSLER, Daniel SEEBACHER, Siming CHEN, Nida CILASUN, Daniel A. KEIM, Tobias SCHRECK, 2018. SocialOcean : Visual Analysis and Characterization of Social Media Bubbles. 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Konstanz, Germany, Oct 17, 2018 - Oct 19, 2018. In: 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Piscataway, NJ:IEEE. ISBN 978-1-5386-9194-6. Available under: doi: 10.1109/BDVA.2018.8534023

@inproceedings{Diehl2018Socia-44990, title={SocialOcean : Visual Analysis and Characterization of Social Media Bubbles}, year={2018}, doi={10.1109/BDVA.2018.8534023}, isbn={978-1-5386-9194-6}, address={Piscataway, NJ}, publisher={IEEE}, booktitle={2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA)}, author={Diehl, Alexandra and Hundt, Michael and Häussler, Johannes and Seebacher, Daniel and Chen, Siming and Cilasun, Nida and Keim, Daniel A. and Schreck, Tobias} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/44990"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2018</dcterms:issued> <dcterms:abstract xml:lang="eng">Social media allows citizens, corporations, and authorities to create, post, and exchange information. The study of its dynamics will enable analysts to understand user activities and social group characteristics such as connectedness, geospatial distribution, and temporal behavior. In this context, social media bubbles can be defined as social groups that exhibit certain biases in social media. These biases strongly depend on the dimensions selected in the analysis, for example, topic affinity, credibility, sentiment, and geographic distribution. In this paper, we present SocialOcean, a visual analytics system that allows for the investigation of social media bubbles. There exists a large body of research in social sciences which identifies important dimensions of social media bubbles (SMBs). While such dimensions have been studied separately, and also some of them in combination, it is still an open question which dimensions play the most important role in defining SMBs. Since the concept of SMBs is fairly recent, there are many unknowns regarding their characterization. We investigate the thematic and spatiotemporal characteristics of SMBs and present a visual analytics system to address questions such as: What are the most important dimensions that characterize SMBs? and How SMBs embody in the presence of specific events that resonate with them? We illustrate our approach using three different real scenarios related to the single event of Boston Marathon Bombing, and political news about Global Warming. We perform an expert evaluation, analyze the experts' feedback, and present the lessons learned.</dcterms:abstract> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Chen, Siming</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Cilasun, Nida</dc:contributor> <dc:creator>Cilasun, Nida</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-12T12:22:27Z</dc:date> <dc:creator>Seebacher, Daniel</dc:creator> <dc:contributor>Chen, Siming</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Hundt, Michael</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Hundt, Michael</dc:contributor> <dc:contributor>Häussler, Johannes</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44990"/> <dc:contributor>Diehl, Alexandra</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:title>SocialOcean : Visual Analysis and Characterization of Social Media Bubbles</dcterms:title> <dc:creator>Häussler, Johannes</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Diehl, Alexandra</dc:creator> <dc:contributor>Seebacher, Daniel</dc:contributor> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-12T12:22:27Z</dcterms:available> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account