The Complexity of Computing the Size of an Interval

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

HEMASPAANDRA, Lane A., Sven KOSUB, Klaus W. WAGNER, 2001. The Complexity of Computing the Size of an Interval. International Colloquium on Automata, Languages, and Programming. Crete, Greece, Jul 8, 2001 - Jul 12, 2001. In: OREJAS, Fernando, ed., Paul G. SPIRAKIS, ed., Jan VAN LEEUWEN, ed.. Automata, Languages and Programming : 28th International Colloquium, ICALP 2001, Proceedings. Berlin:Springer, pp. 1040-1051. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-540-42287-7. Available under: doi: 10.1007/3-540-48224-5_84

@inproceedings{Hemaspaandra2001-07-04Compl-44988, title={The Complexity of Computing the Size of an Interval}, year={2001}, doi={10.1007/3-540-48224-5_84}, number={2076}, isbn={978-3-540-42287-7}, issn={0302-9743}, address={Berlin}, publisher={Springer}, series={Lecture Notes in Computer Science}, booktitle={Automata, Languages and Programming : 28th International Colloquium, ICALP 2001, Proceedings}, pages={1040--1051}, editor={Orejas, Fernando and Spirakis, Paul G. and van Leeuwen, Jan}, author={Hemaspaandra, Lane A. and Kosub, Sven and Wagner, Klaus W.} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:abstract xml:lang="eng">We study the complexity of counting the number of elements in intervals of feasible partial orders. Depending on the properties that partial orders may have, such counting functions have different complexities. If we consider total, polynomial-time decidable orders then we obtain exactly the #P functions. We show that the interval size functions for polynomial-time adjacency checkable orders are tightly related to the class FPSPACE(poly): Every FPSPACE(poly) function equals a polynomial-time function subtracted from such an interval size function. We study the function #DIV that counts the nontrivial divisors of natural numbers, and we show that #DIV is the interval size function of a polynomial-time decidable partial order with polynomial-time adjacency checks if and only if primality is in polynomial time.</dcterms:abstract> <bibo:uri rdf:resource=""/> <dc:contributor>Hemaspaandra, Lane A.</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Kosub, Sven</dc:contributor> <dcterms:title>The Complexity of Computing the Size of an Interval</dcterms:title> <dc:creator>Wagner, Klaus W.</dc:creator> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:available rdf:datatype="">2019-02-12T12:07:47Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Wagner, Klaus W.</dc:contributor> <dc:creator>Hemaspaandra, Lane A.</dc:creator> <dc:date rdf:datatype="">2019-02-12T12:07:47Z</dc:date> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Kosub, Sven</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2001-07-04</dcterms:issued> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account