Cluster computing and the power of edge recognition

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

HEMASPAANDRA, Lane A., Christopher M. HOMAN, Sven KOSUB, 2007. Cluster computing and the power of edge recognition. In: Information and Computation. 205(8), pp. 1274-1293. ISSN 0890-5401. eISSN 1090-2651. Available under: doi: 10.1016/j.ic.2007.02.001

@article{Hemaspaandra2007-08Clust-44933, title={Cluster computing and the power of edge recognition}, year={2007}, doi={10.1016/j.ic.2007.02.001}, number={8}, volume={205}, issn={0890-5401}, journal={Information and Computation}, pages={1274--1293}, author={Hemaspaandra, Lane A. and Homan, Christopher M. and Kosub, Sven} }

Kosub, Sven Homan, Christopher M. Hemaspaandra, Lane A. Hemaspaandra, Lane A. Homan, Christopher M. Though complexity theory already extensively studies path-cardinality-based restrictions on the power of nondeterminism, this paper is motivated by a more recent goal: To gain insight into how much of a restriction, it is of nondeterminism to limit machines to have just one contiguous (with respect to some simple order) interval of accepting paths. In particular, we study the robustness—the invariance under definition changes—of the cluster class CL#P. This class contains each #P function that is computed by a balanced Turing machine whose accepting paths always form a cluster with respect to some length-respecting total order with efficient adjacency checks. The definition of CL#P is heavily influenced by the defining paper’s focus on (global) orders. In contrast, we define a cluster class, CLU#P, to capture what seems to us a more natural model of cluster computing. We prove that the naturalness is costless: CL#P = CLU#P. Then we exploit the more natural, flexible features of CLU#P to prove new robustness results for CL#P and to expand what is known about the closure properties of CL#P.<br /><br />The complexity of recognizing edges—of an ordered collection of computation paths or of a cluster of accepting computation paths—is central to this study. Most particularly, our proofs exploit the power of unique discovery of edges—the ability of nondeterministic functions to, in certain settings, discover on exactly one (in some cases, on at most one) computation path a critical piece of information regarding edges of orderings or clusters. eng 2007-08 2019-02-08T12:16:13Z Cluster computing and the power of edge recognition Kosub, Sven 2019-02-08T12:16:13Z

This item appears in the following Collection(s)

Search KOPS


My Account