On the Scalability of Classical One-Level Domain-Decomposition Methods

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

CHAOUQUI, Fayçal, Gabriele CIARAMELLA, Martin J. GANDER, Tommaso VANZAN, 2018. On the Scalability of Classical One-Level Domain-Decomposition Methods. In: Vietnam Journal of Mathematics. 46(4), pp. 1053-1088. ISSN 2305-221X. eISSN 2305-2228. Available under: doi: 10.1007/s10013-018-0316-9

@article{Chaouqui2018-12Scala-44864, title={On the Scalability of Classical One-Level Domain-Decomposition Methods}, year={2018}, doi={10.1007/s10013-018-0316-9}, number={4}, volume={46}, issn={2305-221X}, journal={Vietnam Journal of Mathematics}, pages={1053--1088}, author={Chaouqui, Fayçal and Ciaramella, Gabriele and Gander, Martin J. and Vanzan, Tommaso} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/44864"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44864"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Vanzan, Tommaso</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-05T14:49:26Z</dc:date> <dc:creator>Ciaramella, Gabriele</dc:creator> <dc:creator>Vanzan, Tommaso</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Chaouqui, Fayçal</dc:creator> <dc:contributor>Ciaramella, Gabriele</dc:contributor> <dcterms:abstract xml:lang="eng">One-level domain-decomposition methods are in general not scalable, and coarse corrections are needed to obtain scalability. It has however recently been observed in applications in computational chemistry that the classical one-level parallel Schwarz method is surprizingly scalable for the solution of one- and two-dimensional chains of fixed-sized subdomains. We first review some of these recent scalability results of the classical one-level parallel Schwarz method, and then prove similar results for other classical one-level domain-decomposition methods, namely the optimized Schwarz method, the Dirichlet–Neumann method, and the Neumann–Neumann method. We show that the scalability of one-level domain decomposition methods depends critically on the geometry of the domain-decomposition and the boundary conditions imposed on the original problem. We illustrate all our results also with numerical experiments.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Chaouqui, Fayçal</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-05T14:49:26Z</dcterms:available> <dcterms:issued>2018-12</dcterms:issued> <dc:language>eng</dc:language> <dcterms:title>On the Scalability of Classical One-Level Domain-Decomposition Methods</dcterms:title> <dc:contributor>Gander, Martin J.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Gander, Martin J.</dc:creator> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account