A relativistic version of the Euler–Korteweg equations

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

FREISTÜHLER, Heinrich, 2018. A relativistic version of the Euler–Korteweg equations. In: Methods and Applications of Analysis. 25(1), pp. 1-12. ISSN 1073-2772. eISSN 1945-0001. Available under: doi: 10.4310/MAA.2018.v25.n1.a1

@article{Freistuhler2018relat-44822, title={A relativistic version of the Euler–Korteweg equations}, year={2018}, doi={10.4310/MAA.2018.v25.n1.a1}, number={1}, volume={25}, issn={1073-2772}, journal={Methods and Applications of Analysis}, pages={1--12}, author={Freistühler, Heinrich} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/44822"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Freistühler, Heinrich</dc:creator> <dcterms:title>A relativistic version of the Euler–Korteweg equations</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T10:09:58Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T10:09:58Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Starting from a variational interpretation of enthalpy, this paper formulates a relativistically covariant version of the Euler–Korteweg equations of fluid dynamics. The system has a canonical Lagrangian and converges in the non-relativistic limit to Dunn and Serrin’s formulation.</dcterms:abstract> <dcterms:issued>2018</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Freistühler, Heinrich</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44822"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account