Ultraflexible Nanowire Array for Label- and Distortion-Free Cellular Force Tracking

Lade...
Vorschaubild
Dateien
Paulitschke_2-1y0ohym43fzf29.pdf
Paulitschke_2-1y0ohym43fzf29.pdfGröße: 318.7 KBDownloads: 208
Datum
2019
Autor:innen
Paulitschke, Philipp
Keber, F.
Lebedev, Andrej
Stephan, Jürgen
Lorenz, Heribert
Hasselmann, Sebastian
Heinrich, Doris
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 732894
Projekt
H2020 FET PROACTIVE Hybrid Optomechanical Technologies (HOT)
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Nano letters. 2019, 19(4), pp. 2207-2214. ISSN 1530-6984. eISSN 1530-6992. Available under: doi: 10.1021/acs.nanolett.8b02568
Zusammenfassung

Living cells interact with their immediate environment by exerting mechanical forces, which regulate important cell functions. Elucidation of such force patterns yields deep insights into the physics of life. Here we present a top-down nanostructured, ultraflexible nanowire array biosensor capable of probing cell-induced forces. Its universal building block, an inverted conical semiconductor nanowire, greatly enhances both the functionality and the sensitivity of the device. In contrast to existing cellular force sensing architectures, microscopy is performed on the nanowire heads while cells deflecting the nanowires are confined within the array. This separation between the optical path and the cells under investigation excludes optical distortions caused by cell-induced refraction, which can give rise to feigned displacements on the 100 nm scale. The undistorted nanowire displacements are converted into cellular forces via the nanowire spring constant. The resulting distortion-free cellular force transducer realizes a high-resolution and label-free biosenor based on optical microscopy. Its performance is demonstrated in a proof-of-principle experiment with living Dictyostelium discoideum cells migrating through the nanowire array. Cell-induced forces are probed with a resolution of 50 piconewton, while the most flexible nanowires promise to enter the 100 femtonewton realm.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
cellular force tracking; Dictyostelium discoideum; label-free biosensing; Nanowire array; optical distortions; spring constant
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690PAULITSCHKE, Philipp, F. KEBER, Andrej LEBEDEV, Jürgen STEPHAN, Heribert LORENZ, Sebastian HASSELMANN, Doris HEINRICH, Eva M. WEIG, 2019. Ultraflexible Nanowire Array for Label- and Distortion-Free Cellular Force Tracking. In: Nano letters. 2019, 19(4), pp. 2207-2214. ISSN 1530-6984. eISSN 1530-6992. Available under: doi: 10.1021/acs.nanolett.8b02568
BibTex
@article{Paulitschke2019-04-10Ultra-44817,
  year={2019},
  doi={10.1021/acs.nanolett.8b02568},
  title={Ultraflexible Nanowire Array for Label- and Distortion-Free Cellular Force Tracking},
  number={4},
  volume={19},
  issn={1530-6984},
  journal={Nano letters},
  pages={2207--2214},
  author={Paulitschke, Philipp and Keber, F. and Lebedev, Andrej and Stephan, Jürgen and Lorenz, Heribert and Hasselmann, Sebastian and Heinrich, Doris and Weig, Eva M.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44817">
    <dc:language>eng</dc:language>
    <dc:contributor>Weig, Eva M.</dc:contributor>
    <dcterms:title>Ultraflexible Nanowire Array for Label- and Distortion-Free Cellular Force Tracking</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Paulitschke, Philipp</dc:contributor>
    <dc:contributor>Lebedev, Andrej</dc:contributor>
    <dc:contributor>Lorenz, Heribert</dc:contributor>
    <dc:contributor>Heinrich, Doris</dc:contributor>
    <dcterms:issued>2019-04-10</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44817/1/Paulitschke_2-1y0ohym43fzf29.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Heinrich, Doris</dc:creator>
    <dc:creator>Paulitschke, Philipp</dc:creator>
    <dc:creator>Weig, Eva M.</dc:creator>
    <dc:creator>Lorenz, Heribert</dc:creator>
    <dc:creator>Keber, F.</dc:creator>
    <dc:contributor>Stephan, Jürgen</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T09:22:03Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44817"/>
    <dc:contributor>Keber, F.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T09:22:03Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44817/1/Paulitschke_2-1y0ohym43fzf29.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Hasselmann, Sebastian</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Lebedev, Andrej</dc:creator>
    <dcterms:abstract xml:lang="eng">Living cells interact with their immediate environment by exerting mechanical forces, which regulate important cell functions. Elucidation of such force patterns yields deep insights into the physics of life. Here we present a top-down nanostructured, ultraflexible nanowire array biosensor capable of probing cell-induced forces. Its universal building block, an inverted conical semiconductor nanowire, greatly enhances both the functionality and the sensitivity of the device. In contrast to existing cellular force sensing architectures, microscopy is performed on the nanowire heads while cells deflecting the nanowires are confined within the array. This separation between the optical path and the cells under investigation excludes optical distortions caused by cell-induced refraction, which can give rise to feigned displacements on the 100 nm scale. The undistorted nanowire displacements are converted into cellular forces via the nanowire spring constant. The resulting distortion-free cellular force transducer realizes a high-resolution and label-free biosenor based on optical microscopy. Its performance is demonstrated in a proof-of-principle experiment with living Dictyostelium discoideum cells migrating through the nanowire array. Cell-induced forces are probed with a resolution of 50 piconewton, while the most flexible nanowires promise to enter the 100 femtonewton realm.</dcterms:abstract>
    <dc:creator>Stephan, Jürgen</dc:creator>
    <dc:contributor>Hasselmann, Sebastian</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen