Ultraflexible Nanowire Array for Label- and Distortion-Free Cellular Force Tracking
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Living cells interact with their immediate environment by exerting mechanical forces, which regulate important cell functions. Elucidation of such force patterns yields deep insights into the physics of life. Here we present a top-down nanostructured, ultraflexible nanowire array biosensor capable of probing cell-induced forces. Its universal building block, an inverted conical semiconductor nanowire, greatly enhances both the functionality and the sensitivity of the device. In contrast to existing cellular force sensing architectures, microscopy is performed on the nanowire heads while cells deflecting the nanowires are confined within the array. This separation between the optical path and the cells under investigation excludes optical distortions caused by cell-induced refraction, which can give rise to feigned displacements on the 100 nm scale. The undistorted nanowire displacements are converted into cellular forces via the nanowire spring constant. The resulting distortion-free cellular force transducer realizes a high-resolution and label-free biosenor based on optical microscopy. Its performance is demonstrated in a proof-of-principle experiment with living Dictyostelium discoideum cells migrating through the nanowire array. Cell-induced forces are probed with a resolution of 50 piconewton, while the most flexible nanowires promise to enter the 100 femtonewton realm.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PAULITSCHKE, Philipp, F. KEBER, Andrej LEBEDEV, Jürgen STEPHAN, Heribert LORENZ, Sebastian HASSELMANN, Doris HEINRICH, Eva M. WEIG, 2019. Ultraflexible Nanowire Array for Label- and Distortion-Free Cellular Force Tracking. In: Nano letters. 2019, 19(4), pp. 2207-2214. ISSN 1530-6984. eISSN 1530-6992. Available under: doi: 10.1021/acs.nanolett.8b02568BibTex
@article{Paulitschke2019-04-10Ultra-44817, year={2019}, doi={10.1021/acs.nanolett.8b02568}, title={Ultraflexible Nanowire Array for Label- and Distortion-Free Cellular Force Tracking}, number={4}, volume={19}, issn={1530-6984}, journal={Nano letters}, pages={2207--2214}, author={Paulitschke, Philipp and Keber, F. and Lebedev, Andrej and Stephan, Jürgen and Lorenz, Heribert and Hasselmann, Sebastian and Heinrich, Doris and Weig, Eva M.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44817"> <dc:language>eng</dc:language> <dc:contributor>Weig, Eva M.</dc:contributor> <dcterms:title>Ultraflexible Nanowire Array for Label- and Distortion-Free Cellular Force Tracking</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Paulitschke, Philipp</dc:contributor> <dc:contributor>Lebedev, Andrej</dc:contributor> <dc:contributor>Lorenz, Heribert</dc:contributor> <dc:contributor>Heinrich, Doris</dc:contributor> <dcterms:issued>2019-04-10</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44817/1/Paulitschke_2-1y0ohym43fzf29.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Heinrich, Doris</dc:creator> <dc:creator>Paulitschke, Philipp</dc:creator> <dc:creator>Weig, Eva M.</dc:creator> <dc:creator>Lorenz, Heribert</dc:creator> <dc:creator>Keber, F.</dc:creator> <dc:contributor>Stephan, Jürgen</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T09:22:03Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44817"/> <dc:contributor>Keber, F.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T09:22:03Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44817/1/Paulitschke_2-1y0ohym43fzf29.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Hasselmann, Sebastian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Lebedev, Andrej</dc:creator> <dcterms:abstract xml:lang="eng">Living cells interact with their immediate environment by exerting mechanical forces, which regulate important cell functions. Elucidation of such force patterns yields deep insights into the physics of life. Here we present a top-down nanostructured, ultraflexible nanowire array biosensor capable of probing cell-induced forces. Its universal building block, an inverted conical semiconductor nanowire, greatly enhances both the functionality and the sensitivity of the device. In contrast to existing cellular force sensing architectures, microscopy is performed on the nanowire heads while cells deflecting the nanowires are confined within the array. This separation between the optical path and the cells under investigation excludes optical distortions caused by cell-induced refraction, which can give rise to feigned displacements on the 100 nm scale. The undistorted nanowire displacements are converted into cellular forces via the nanowire spring constant. The resulting distortion-free cellular force transducer realizes a high-resolution and label-free biosenor based on optical microscopy. Its performance is demonstrated in a proof-of-principle experiment with living Dictyostelium discoideum cells migrating through the nanowire array. Cell-induced forces are probed with a resolution of 50 piconewton, while the most flexible nanowires promise to enter the 100 femtonewton realm.</dcterms:abstract> <dc:creator>Stephan, Jürgen</dc:creator> <dc:contributor>Hasselmann, Sebastian</dc:contributor> </rdf:Description> </rdf:RDF>