Learned Feature Generation for Molecules

Cite This

Files in this item

Checksum: MD5:1652277985ef97a7bf7c4cd81a1c830c

WINTER, Patrick, Christian BORGELT, Michael R. BERTHOLD, 2018. Learned Feature Generation for Molecules. 17th International Symposium, IDA 2018. ’s-Hertogenbosch, The Netherlands, Oct 24, 2018 - Oct 26, 2018. In: DUIVESTEIJN, Wouter, ed., Arno SIEBES, ed., Antti UKKONEN, ed.. Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, proceedings. Cham:Springer, pp. 380-391. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-01767-5. Available under: doi: 10.1007/978-3-030-01768-2_31

@inproceedings{Winter2018-10-05Learn-44691, title={Learned Feature Generation for Molecules}, year={2018}, doi={10.1007/978-3-030-01768-2_31}, number={11191}, isbn={978-3-030-01767-5}, issn={0302-9743}, address={Cham}, publisher={Springer}, series={Lecture Notes in Computer Science}, booktitle={Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, proceedings}, pages={380--391}, editor={Duivesteijn, Wouter and Siebes, Arno and Ukkonen, Antti}, author={Winter, Patrick and Borgelt, Christian and Berthold, Michael R.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/44691"> <dc:contributor>Borgelt, Christian</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44691/1/Winter_2-m7ofa8jpw2sa6.pdf"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:abstract xml:lang="eng">When classifying molecules for virtual screening, the molecular structure first needs to be converted into meaningful features, before a classifier can be trained. The most common methods use a static algorithm that has been created based on domain knowledge to perform this generation of features. We propose an approach where this conversion is learned by convolutional neural network finding features that are useful for teh task at hand based on the available data. Preliminary results indicate that our current approach can already come up with fetaures that perform similarly well as common methods. Since this approach does not jet use any chemiocal properties, results could be improved in future versions</dcterms:abstract> <dc:creator>Borgelt, Christian</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Winter, Patrick</dc:contributor> <dcterms:issued>2018-10-05</dcterms:issued> <dcterms:title>Learned Feature Generation for Molecules</dcterms:title> <dc:creator>Berthold, Michael R.</dc:creator> <dc:creator>Winter, Patrick</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T13:29:47Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44691/1/Winter_2-m7ofa8jpw2sa6.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T13:29:47Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44691"/> </rdf:Description> </rdf:RDF>

Downloads since Jan 23, 2019 (Information about access statistics)

Winter_2-m7ofa8jpw2sa6.pdf 159

This item appears in the following Collection(s)

Search KOPS


Browse

My Account