Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

HAUPT, Caroline, Rica PATZSCHKE, Ulrich WEININGER, Stefan GRÖGER, Michael KOVERMANN, Jochen BALBACH, 2011. Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR. In: Journal of the American Chemical Society. 133(29), pp. 11154-11162. ISSN 0002-7863. eISSN 1520-5126. Available under: doi: 10.1021/ja2010048

@article{Haupt2011-07-27Trans-44621, title={Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR}, year={2011}, doi={10.1021/ja2010048}, number={29}, volume={133}, issn={0002-7863}, journal={Journal of the American Chemical Society}, pages={11154--11162}, author={Haupt, Caroline and Patzschke, Rica and Weininger, Ulrich and Gröger, Stefan and Kovermann, Michael and Balbach, Jochen} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <bibo:uri rdf:resource=""/> <dc:contributor>Weininger, Ulrich</dc:contributor> <dc:contributor>Balbach, Jochen</dc:contributor> <dc:creator>Patzschke, Rica</dc:creator> <dc:creator>Haupt, Caroline</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore, protein folding helpers have evolved, which prevent proteins from aggregation and/or speed up folding processes. In this study, we present the structural characterization of a long-living transient folding intermediate of RNase T1 (S54G/P55N) by time-resolved NMR spectroscopy. NMR resonances of this kinetic folding intermediate could be assigned mainly by a real-time 3D BEST-HNCA. These assignments were the basis to investigate the interaction sites between the protein folding helper enzyme SlyD(1-165) (SlyD*) from Escherichia coli (E. coli) and this kinetic intermediate at a residue resolution. Thus, we investigated the Michaelis-Menten complex of this enzyme reaction, because the NMR data acquisition was performed during the actual catalysis. The interaction surface of the transient folding intermediate is restricted to a region around the peptidyl-prolyl bond (Y38-P39), whose isomerization is catalyzed by SlyD*. The interaction surface regarding SlyD* extends from specific amino acids of the FKBP domain forming the peptidyl-prolyl cis/trans-isomerase active site to almost the entire IF domain. This illustrates an effective interplay between the two functional domains of SlyD* to facilitate protein folding catalysis.</dcterms:abstract> <dc:contributor>Patzschke, Rica</dc:contributor> <dc:creator>Weininger, Ulrich</dc:creator> <dc:date rdf:datatype="">2019-01-18T12:46:18Z</dc:date> <dcterms:isPartOf rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="">2019-01-18T12:46:18Z</dcterms:available> <dc:contributor>Kovermann, Michael</dc:contributor> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Gröger, Stefan</dc:contributor> <dcterms:title>Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR</dcterms:title> <dc:creator>Kovermann, Michael</dc:creator> <dc:creator>Gröger, Stefan</dc:creator> <dc:creator>Balbach, Jochen</dc:creator> <dc:contributor>Haupt, Caroline</dc:contributor> <dcterms:issued>2011-07-27</dcterms:issued> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account