From Movement to Events : Improving Soccer Match Annotations

Lade...
Vorschaubild
Dateien
Stein_2-1obn1hbizozoa1.pdf
Stein_2-1obn1hbizozoa1.pdfGröße: 285.7 KBDownloads: 615
Datum
2019
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
KOMPATSIARIS, Ioannis, ed., Benoit HUET, ed., Vasileios MEZARIS, ed., Cathal GURRIN, ed., Wen-Huang CHENG, ed., Stefanos VROCHIDIS, ed.. MultiMedia Modeling : 25th International Conference, MMM 2019, Proceedings, Part I. Cham: Springer International Publishing, 2019, pp. 130-142. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-05709-1. Available under: doi: 10.1007/978-3-030-05710-7_11
Zusammenfassung

Match analysis has become an important task in everyday work at professional soccer clubs in order to improve team performance. Video analysts regularly spend up to several days analyzing and summarizing matches based on tracked and annotated match data. Although there already exists extensive capabilities to track the movement of players and the ball from multimedia data sources such as video recordings, there is no capability to sufficiently detect dynamic and complex events within these data. As a consequence, analysts have to rely on manually created annotations, which are very time-consuming and expensive to create. We propose a novel method for the semi-automatic definition and detection of events based entirely on movement data of players and the ball. Incorporating Allen’s interval algebra into a visual analytics system, we enable analysts to visually define as well as search for complex, hierarchical events. We demonstrate the usefulness of our approach by quantitatively comparing our automatically detected events with manually annotated events from a professional data provider as well as several expert interviews. The results of our evaluation show that the required annotation time for complete matches by using our system can be reduced to a few seconds while achieving a similar level of performance.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Visual analytics, Sport analytics, Event analysis
Konferenz
MultiMedia Modeling : 25th International Conference, 8. Jan. 2019 - 11. Jan. 2019, Thessaloniki, Greece
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690STEIN, Manuel, Daniel SEEBACHER, Tassilo KARGE, Tom POLK, Michael GROSSNIKLAUS, Daniel A. KEIM, 2019. From Movement to Events : Improving Soccer Match Annotations. MultiMedia Modeling : 25th International Conference. Thessaloniki, Greece, 8. Jan. 2019 - 11. Jan. 2019. In: KOMPATSIARIS, Ioannis, ed., Benoit HUET, ed., Vasileios MEZARIS, ed., Cathal GURRIN, ed., Wen-Huang CHENG, ed., Stefanos VROCHIDIS, ed.. MultiMedia Modeling : 25th International Conference, MMM 2019, Proceedings, Part I. Cham: Springer International Publishing, 2019, pp. 130-142. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-05709-1. Available under: doi: 10.1007/978-3-030-05710-7_11
BibTex
@inproceedings{Stein2019Movem-44519,
  year={2019},
  doi={10.1007/978-3-030-05710-7_11},
  title={From Movement to Events : Improving Soccer Match Annotations},
  number={11295},
  isbn={978-3-030-05709-1},
  issn={0302-9743},
  publisher={Springer International Publishing},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={MultiMedia Modeling : 25th International Conference, MMM 2019, Proceedings, Part I},
  pages={130--142},
  editor={Kompatsiaris, Ioannis and Huet, Benoit and Mezaris, Vasileios and Gurrin, Cathal and Cheng, Wen-Huang and Vrochidis, Stefanos},
  author={Stein, Manuel and Seebacher, Daniel and Karge, Tassilo and Polk, Tom and Grossniklaus, Michael and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44519">
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44519/1/Stein_2-1obn1hbizozoa1.pdf"/>
    <dcterms:title>From Movement to Events : Improving Soccer Match Annotations</dcterms:title>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Polk, Tom</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44519/1/Stein_2-1obn1hbizozoa1.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Karge, Tassilo</dc:creator>
    <dc:creator>Stein, Manuel</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T15:12:49Z</dcterms:available>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Polk, Tom</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T15:12:49Z</dc:date>
    <dcterms:abstract xml:lang="eng">Match analysis has become an important task in everyday work at professional soccer clubs in order to improve team performance. Video analysts regularly spend up to several days analyzing and summarizing matches based on tracked and annotated match data. Although there already exists extensive capabilities to track the movement of players and the ball from multimedia data sources such as video recordings, there is no capability to sufficiently detect dynamic and complex events within these data. As a consequence, analysts have to rely on manually created annotations, which are very time-consuming and expensive to create. We propose a novel method for the semi-automatic definition and detection of events based entirely on movement data of players and the ball. Incorporating Allen’s interval algebra into a visual analytics system, we enable analysts to visually define as well as search for complex, hierarchical events. We demonstrate the usefulness of our approach by quantitatively comparing our automatically detected events with manually annotated events from a professional data provider as well as several expert interviews. The results of our evaluation show that the required annotation time for complete matches by using our system can be reduced to a few seconds while achieving a similar level of performance.</dcterms:abstract>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2019</dcterms:issued>
    <dc:contributor>Karge, Tassilo</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44519"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet