Revealing the Invisible : Visual Analytics and Explanatory Storytelling for Advanced Team Sport Analysis

Lade...
Vorschaubild
Dateien
Stein_2-1xlyopkg7x3vz6.pdf
Stein_2-1xlyopkg7x3vz6.pdfGröße: 382.29 KBDownloads: 708
Datum
2018
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Piscataway, NJ: IEEE, 2018, pp. 148-156. ISBN 978-1-5386-9194-6. Available under: doi: 10.1109/BDVA.2018.8534022
Zusammenfassung

The analysis of invasive team sports often concentrates on cooperative and competitive aspects of collective movement behavior. A main goal is the identification and explanation of strategies, and eventually the development of new strategies. In visual sports analytics, a range of different visual-interactive analysis techniques have been proposed, e.g., based on visualization using for example trajectories, graphs, heatmaps, and animations. Identifying suitable visualizations for a specific situation is key to a successful analysis. Existing systems enable the interactive selection of different visualization facets to support the analysis process. However, an interactive selection of appropriate visualizations is a difficult, complex, and time-consuming task. In this paper, we propose a four-step analytics conceptual workflow for an automatic selection of appropriate views for key situations in soccer games. Our concept covers classification, specification, explanation, and alteration of match situations, effectively enabling the analysts to focus on important game situations and the determination of alternative moves. Combining abstract visualizations with real world video recordings by Immersive Visual Analytics and descriptive storylines, we support domain experts in understanding key situations. We demonstrate the usefulness of our proposed conceptual workflow via two proofs of concept and evaluate our system by comparing our results to manual video annotations by domain experts. Initial expert feedback shows that our proposed concept improves the understanding of competitive sports and leads to a more efficient data analysis.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA), 17. Okt. 2018 - 19. Okt. 2018, Konstanz, Germany
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690STEIN, Manuel, Thorsten BREITKREUTZ, Johannes HÄUSSLER, Daniel SEEBACHER, Christoph NIEDERBERGER, Tobias SCHRECK, Michael GROSSNIKLAUS, Daniel A. KEIM, Halldor JANETZKO, 2018. Revealing the Invisible : Visual Analytics and Explanatory Storytelling for Advanced Team Sport Analysis. 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Konstanz, Germany, 17. Okt. 2018 - 19. Okt. 2018. In: 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Piscataway, NJ: IEEE, 2018, pp. 148-156. ISBN 978-1-5386-9194-6. Available under: doi: 10.1109/BDVA.2018.8534022
BibTex
@inproceedings{Stein2018-10Revea-44389,
  year={2018},
  doi={10.1109/BDVA.2018.8534022},
  title={Revealing the Invisible : Visual Analytics and Explanatory Storytelling for Advanced Team Sport Analysis},
  isbn={978-1-5386-9194-6},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA)},
  pages={148--156},
  author={Stein, Manuel and Breitkreutz, Thorsten and Häußler, Johannes and Seebacher, Daniel and Niederberger, Christoph and Schreck, Tobias and Grossniklaus, Michael and Keim, Daniel A. and Janetzko, Halldor}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44389">
    <dc:language>eng</dc:language>
    <dcterms:title>Revealing the Invisible : Visual Analytics and Explanatory Storytelling for Advanced Team Sport Analysis</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44389/1/Stein_2-1xlyopkg7x3vz6.pdf"/>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:creator>Niederberger, Christoph</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T13:43:25Z</dc:date>
    <dc:contributor>Breitkreutz, Thorsten</dc:contributor>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44389"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T13:43:25Z</dcterms:available>
    <dc:creator>Häußler, Johannes</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Häußler, Johannes</dc:contributor>
    <dcterms:abstract xml:lang="eng">The analysis of invasive team sports often concentrates on cooperative and competitive aspects of collective movement behavior. A main goal is the identification and explanation of strategies, and eventually the development of new strategies. In visual sports analytics, a range of different visual-interactive analysis techniques have been proposed, e.g., based on visualization using for example trajectories, graphs, heatmaps, and animations. Identifying suitable visualizations for a specific situation is key to a successful analysis. Existing systems enable the interactive selection of different visualization facets to support the analysis process. However, an interactive selection of appropriate visualizations is a difficult, complex, and time-consuming task. In this paper, we propose a four-step analytics conceptual workflow for an automatic selection of appropriate views for key situations in soccer games. Our concept covers classification, specification, explanation, and alteration of match situations, effectively enabling the analysts to focus on important game situations and the determination of alternative moves. Combining abstract visualizations with real world video recordings by Immersive Visual Analytics and descriptive storylines, we support domain experts in understanding key situations. We demonstrate the usefulness of our proposed conceptual workflow via two proofs of concept and evaluate our system by comparing our results to manual video annotations by domain experts. Initial expert feedback shows that our proposed concept improves the understanding of competitive sports and leads to a more efficient data analysis.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Niederberger, Christoph</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44389/1/Stein_2-1xlyopkg7x3vz6.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Breitkreutz, Thorsten</dc:creator>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Stein, Manuel</dc:creator>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dcterms:issued>2018-10</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen