Giveme5W : Main Event Retrieval from News Articles by Extraction of the Five Journalistic W Questions

Thumbnail Image
Date
2018
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Transforming Digital Worlds : 13th International Conference, iConference 2018 / Chowdhury, Gobinda et al. (ed.). - Cham : Springer, 2018. - (Lecture Notes in Computer Science ; 10766). - pp. 356-366. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-319-78104-4
Abstract
Extraction of event descriptors from news articles is a commonly required task for various tasks, such as clustering related articles, summarization, and news aggregation. Due to the lack of generally usable and publicly available methods optimized for news, many researchers must redundantly implement such methods for their project. Answers to the five journalistic W questions (5Ws) describe the main event of a news article, i.e., who did what, when, where, and why. The main contribution of this paper is Giveme5W, the first open-source, syntax-based 5W extraction system for news articles. The system retrieves an article’s main event by extracting phrases that answer the journalistic 5Ws. In an evaluation with three assessors and 60 articles, we find that the extraction precision of 5W phrases is p=0.7.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
News event detection, 5W extraction, 5W question answering
Conference
13th International Conference : iConference 2018, Mar 25, 2018 - Mar 28, 2018, Sheffield, UK
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690HAMBORG, Felix, Soeren LACHNIT, Moritz SCHUBOTZ, Thomas HEPP, Bela GIPP, 2018. Giveme5W : Main Event Retrieval from News Articles by Extraction of the Five Journalistic W Questions. 13th International Conference : iConference 2018. Sheffield, UK, Mar 25, 2018 - Mar 28, 2018. In: CHOWDHURY, Gobinda, ed. and others. Transforming Digital Worlds : 13th International Conference, iConference 2018. Cham:Springer, pp. 356-366. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-78104-4. Available under: doi: 10.1007/978-3-319-78105-1_39
BibTex
@inproceedings{Hamborg2018Givem-42992,
  year={2018},
  doi={10.1007/978-3-319-78105-1_39},
  title={Giveme5W : Main Event Retrieval from News Articles by Extraction of the Five Journalistic W Questions},
  number={10766},
  isbn={978-3-319-78104-4},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Transforming Digital Worlds : 13th International Conference, iConference 2018},
  pages={356--366},
  editor={Chowdhury, Gobinda},
  author={Hamborg, Felix and Lachnit, Soeren and Schubotz, Moritz and Hepp, Thomas and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42992">
    <dcterms:abstract xml:lang="eng">Extraction of event descriptors from news articles is a commonly required task for various tasks, such as clustering related articles, summarization, and news aggregation. Due to the lack of generally usable and publicly available methods optimized for news, many researchers must redundantly implement such methods for their project. Answers to the five journalistic W questions (5Ws) describe the main event of a news article, i.e., who did what, when, where, and why. The main contribution of this paper is Giveme5W, the first open-source, syntax-based 5W extraction system for news articles. The system retrieves an article’s main event by extracting phrases that answer the journalistic 5Ws. In an evaluation with three assessors and 60 articles, we find that the extraction precision of 5W phrases is p=0.7.</dcterms:abstract>
    <dcterms:title>Giveme5W : Main Event Retrieval from News Articles by Extraction of the Five Journalistic W Questions</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-07T11:33:23Z</dc:date>
    <dc:contributor>Schubotz, Moritz</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-07T11:33:23Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42992"/>
    <dc:creator>Schubotz, Moritz</dc:creator>
    <dc:contributor>Lachnit, Soeren</dc:contributor>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dc:creator>Lachnit, Soeren</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42992/1/Hamborg_2-zvj635jqif8r8.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Hepp, Thomas</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42992/1/Hamborg_2-zvj635jqif8r8.pdf"/>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2018</dcterms:issued>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dc:creator>Hepp, Thomas</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed