Type of Publication: | Contribution to a conference collection |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-zvj635jqif8r8 |
Author: | Hamborg, Felix; Lachnit, Soeren; Schubotz, Moritz; Hepp, Thomas; Gipp, Bela |
Year of publication: | 2018 |
Conference: | 13th International Conference : iConference 2018, Mar 25, 2018 - Mar 28, 2018, Sheffield, UK |
Published in: | Transforming Digital Worlds : 13th International Conference, iConference 2018 / Chowdhury, Gobinda et al. (ed.). - Cham : Springer, 2018. - (Lecture Notes in Computer Science ; 10766). - pp. 356-366. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-319-78104-4 |
DOI (citable link): | https://dx.doi.org/10.1007/978-3-319-78105-1_39 |
Summary: |
Extraction of event descriptors from news articles is a commonly required task for various tasks, such as clustering related articles, summarization, and news aggregation. Due to the lack of generally usable and publicly available methods optimized for news, many researchers must redundantly implement such methods for their project. Answers to the five journalistic W questions (5Ws) describe the main event of a news article, i.e., who did what, when, where, and why. The main contribution of this paper is Giveme5W, the first open-source, syntax-based 5W extraction system for news articles. The system retrieves an article’s main event by extracting phrases that answer the journalistic 5Ws. In an evaluation with three assessors and 60 articles, we find that the extraction precision of 5W phrases is p=0.7.
|
Subject (DDC): | 004 Computer Science |
Keywords: | News event detection, 5W extraction, 5W question answering |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
HAMBORG, Felix, Soeren LACHNIT, Moritz SCHUBOTZ, Thomas HEPP, Bela GIPP, 2018. Giveme5W : Main Event Retrieval from News Articles by Extraction of the Five Journalistic W Questions. 13th International Conference : iConference 2018. Sheffield, UK, Mar 25, 2018 - Mar 28, 2018. In: CHOWDHURY, Gobinda, ed. and others. Transforming Digital Worlds : 13th International Conference, iConference 2018. Cham:Springer, pp. 356-366. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-78104-4. Available under: doi: 10.1007/978-3-319-78105-1_39
@inproceedings{Hamborg2018Givem-42992, title={Giveme5W : Main Event Retrieval from News Articles by Extraction of the Five Journalistic W Questions}, year={2018}, doi={10.1007/978-3-319-78105-1_39}, number={10766}, isbn={978-3-319-78104-4}, issn={0302-9743}, address={Cham}, publisher={Springer}, series={Lecture Notes in Computer Science}, booktitle={Transforming Digital Worlds : 13th International Conference, iConference 2018}, pages={356--366}, editor={Chowdhury, Gobinda}, author={Hamborg, Felix and Lachnit, Soeren and Schubotz, Moritz and Hepp, Thomas and Gipp, Bela} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/42992"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Schubotz, Moritz</dc:contributor> <dc:contributor>Hepp, Thomas</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Lachnit, Soeren</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Hamborg, Felix</dc:contributor> <dcterms:issued>2018</dcterms:issued> <dcterms:abstract xml:lang="eng">Extraction of event descriptors from news articles is a commonly required task for various tasks, such as clustering related articles, summarization, and news aggregation. Due to the lack of generally usable and publicly available methods optimized for news, many researchers must redundantly implement such methods for their project. Answers to the five journalistic W questions (5Ws) describe the main event of a news article, i.e., who did what, when, where, and why. The main contribution of this paper is Giveme5W, the first open-source, syntax-based 5W extraction system for news articles. The system retrieves an article’s main event by extracting phrases that answer the journalistic 5Ws. In an evaluation with three assessors and 60 articles, we find that the extraction precision of 5W phrases is p=0.7.</dcterms:abstract> <dc:creator>Hamborg, Felix</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Hepp, Thomas</dc:creator> <dcterms:title>Giveme5W : Main Event Retrieval from News Articles by Extraction of the Five Journalistic W Questions</dcterms:title> <dc:contributor>Gipp, Bela</dc:contributor> <dc:creator>Gipp, Bela</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42992/1/Hamborg_2-zvj635jqif8r8.pdf"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-07T11:33:23Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-07T11:33:23Z</dc:date> <dc:contributor>Lachnit, Soeren</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42992"/> <dc:creator>Schubotz, Moritz</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42992/1/Hamborg_2-zvj635jqif8r8.pdf"/> </rdf:Description> </rdf:RDF>
Hamborg_2-zvj635jqif8r8.pdf | 461 |