Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können am Montag, 6.2. und Dienstag, 7.2. keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted on Monday, Feb. 6 and Tuesday, Feb. 7.)

A HJB-POD Approach to the Control of the Level Set Equation

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

ALLA, Alessandro, Giulia FABRINI, Maurizio FALCONE, 2017. A HJB-POD Approach to the Control of the Level Set Equation. In: BENNER, Peter, ed. and others. Model Reduction of Parametrized Systems. Cham:Springer, pp. 317-331. ISBN 978-3-319-58785-1. Available under: doi: 10.1007/978-3-319-58786-8_20

@incollection{Alla2017-09-06HJBPO-42676, title={A HJB-POD Approach to the Control of the Level Set Equation}, year={2017}, doi={10.1007/978-3-319-58786-8_20}, number={17}, isbn={978-3-319-58785-1}, address={Cham}, publisher={Springer}, series={Modeling, simulation & applications}, booktitle={Model Reduction of Parametrized Systems}, pages={317--331}, editor={Benner, Peter}, author={Alla, Alessandro and Fabrini, Giulia and Falcone, Maurizio} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Alla, Alessandro</dc:contributor> <dcterms:available rdf:datatype="">2018-06-25T09:09:33Z</dcterms:available> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource=""/> <bibo:uri rdf:resource=""/> <dc:creator>Falcone, Maurizio</dc:creator> <dcterms:title>A HJB-POD Approach to the Control of the Level Set Equation</dcterms:title> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:abstract xml:lang="eng">We consider an optimal control problem where the dynamics is given by the propagation of a one-dimensional graph controlled by its normal speed. A target corresponding to the final configuration of the front is given and we want to minimize the cost to reach the target. We want to solve this optimal control problem via the dynamic programming approach but it is well known that these methods suffer from the “curse of dimensionality” so that we can not apply the method to the semi-discrete version of the dynamical system. However, this is made possible by a reduced-order model for the level set equation which is based on Proper Orthogonal Decomposition. This results in a new low-dimensional dynamical system which is sufficient to track the dynamics. By the numerical solution of the Hamilton-Jacobi-Bellman equation related to the POD approximation we can compute the feedback law and the corresponding optimal trajectory for the nonlinear front propagation problem. We discuss some numerical issues of this approach and present a couple of numerical examples.</dcterms:abstract> <dc:creator>Fabrini, Giulia</dc:creator> <dc:contributor>Falcone, Maurizio</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Fabrini, Giulia</dc:contributor> <dcterms:issued>2017-09-06</dcterms:issued> <dc:creator>Alla, Alessandro</dc:creator> <dc:date rdf:datatype="">2018-06-25T09:09:33Z</dc:date> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account