Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Journal article |
Publication status: | Published |
Author: | Jain, Gaurav; Pendola, Martin; Huang, Yu-Chieh; Gebauer, Denis; Koutsoumpeli, Eleni; Johnson, Steven; Evans, John Spencer |
Year of publication: | 2018 |
Published in: | Biochemistry ; 57 (2018), 18. - pp. 2657-2666. - ISSN 0006-2960. - eISSN 1520-4995 |
Pubmed ID: | 29620882 |
DOI (citable link): | https://dx.doi.org/10.1021/acs.biochem.8b00119 |
Summary: |
In the nacre layer of the Pinctada fucata oyster shell there exists a multimember proteome, known as the framework family, which regulates the formation of the aragonite mesoscale tablets and participates in the creation of an organic coating around each tablet. Several approaches have been developed to understand protein-associated mechanisms of nacre formation, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights we have created a proportionally defined combinatorial model consisting of two recombinant framework proteins, r-Pif97 (containing a von Willebrand Factor Type A domain (vWA)) and r-n16.3 (containing an EGF-like domain), whose individual in vitro mineralization functionalities are distinct from one another. We find that at 1:1 molar ratios r-Pif97 and r-n16.3 exhibit little or no synergistic activity regarding modifying existing calcite crystals. However, during the early stages of nucleation in solution, we note synergistic effects on nucleation kinetics and ACC formation/stability (via dehydration) that are not observed for the individual proteins. This selective synergism is generated by Ca2+-mediated protein–protein interactions (∼4 molecules of r-n16.3 per 1 molecule of r-Pif97) which lead to the formation of nucleation-responsive hybrid hydrogel particles in solution. Interestingly, in the absence of Ca2+ there are no significant interactions occurring between the two proteins. This unique behavior of the framework-associated n16.3 and Pif97 proteins suggests that the Asp/Glu-containing regions of the vWA and EGF-like domains may play a role in both nacre matrix formation and mineralization.
|
Subject (DDC): | 540 Chemistry |
Bibliography of Konstanz: | Yes |
Refereed: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
JAIN, Gaurav, Martin PENDOLA, Yu-Chieh HUANG, Denis GEBAUER, Eleni KOUTSOUMPELI, Steven JOHNSON, John Spencer EVANS, 2018. Selective Synergism Created by Interactive Nacre Framework-Associated Proteins Possessing EGF and vWA Motifs : Implications for Mollusk Shell Formation. In: Biochemistry. 57(18), pp. 2657-2666. ISSN 0006-2960. eISSN 1520-4995. Available under: doi: 10.1021/acs.biochem.8b00119
@article{Jain2018-05-08Selec-42486, title={Selective Synergism Created by Interactive Nacre Framework-Associated Proteins Possessing EGF and vWA Motifs : Implications for Mollusk Shell Formation}, year={2018}, doi={10.1021/acs.biochem.8b00119}, number={18}, volume={57}, issn={0006-2960}, journal={Biochemistry}, pages={2657--2666}, author={Jain, Gaurav and Pendola, Martin and Huang, Yu-Chieh and Gebauer, Denis and Koutsoumpeli, Eleni and Johnson, Steven and Evans, John Spencer} }