Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)

Aeroecology : probing and modeling the aerosphere

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

KUNZ, Thomas H., Sidney A. GAUTHREAUX, Nickolay I. HRISTOV, Jason W. HORN, Gareth JONES, Elisabeth K.V. KALKO, Ronald P. LARKIN, Gary F. MCCRACKEN, Sharon M. SWARTZ, Martin WIKELSKI, 2008. Aeroecology : probing and modeling the aerosphere. In: Integrative and Comparative Biology. 48(1), pp. 1-11. ISSN 1540-7063. eISSN 1557-7023. Available under: doi: 10.1093/icb/icn037

@article{Kunz2008-07Aeroe-42324, title={Aeroecology : probing and modeling the aerosphere}, year={2008}, doi={10.1093/icb/icn037}, number={1}, volume={48}, issn={1540-7063}, journal={Integrative and Comparative Biology}, pages={1--11}, author={Kunz, Thomas H. and Gauthreaux, Sidney A. and Hristov, Nickolay I. and Horn, Jason W. and Jones, Gareth and Kalko, Elisabeth K.V. and Larkin, Ronald P. and McCracken, Gary F. and Swartz, Sharon M. and Wikelski, Martin} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Larkin, Ronald P.</dc:contributor> <dc:contributor>McCracken, Gary F.</dc:contributor> <dc:creator>Swartz, Sharon M.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2008-07</dcterms:issued> <dc:contributor>Hristov, Nickolay I.</dc:contributor> <bibo:uri rdf:resource=""/> <dc:language>eng</dc:language> <dc:creator>Hristov, Nickolay I.</dc:creator> <dc:contributor>Jones, Gareth</dc:contributor> <dc:contributor>Kalko, Elisabeth K.V.</dc:contributor> <dc:creator>McCracken, Gary F.</dc:creator> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:available rdf:datatype="">2018-05-15T07:56:27Z</dcterms:available> <dcterms:title>Aeroecology : probing and modeling the aerosphere</dcterms:title> <dc:creator>Gauthreaux, Sidney A.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="">2018-05-15T07:56:27Z</dc:date> <dc:contributor>Kunz, Thomas H.</dc:contributor> <dc:creator>Wikelski, Martin</dc:creator> <dcterms:isPartOf rdf:resource=""/> <dc:contributor>Horn, Jason W.</dc:contributor> <dc:creator>Larkin, Ronald P.</dc:creator> <dc:contributor>Gauthreaux, Sidney A.</dc:contributor> <dc:creator>Horn, Jason W.</dc:creator> <dc:creator>Kalko, Elisabeth K.V.</dc:creator> <dcterms:abstract xml:lang="eng">Aeroecology is a discipline that embraces and integrates the domains of atmospheric science, ecology, earth science, geography, computer science, computational biology, and engineering. The unifying concept that underlies this emerging discipline is its focus on the planetary boundary layer, or aerosphere, and the myriad of organisms that, in large part, depend upon this environment for their existence. The aerosphere influences both daily and seasonal movements of organisms, and its effects have both short- and long-term consequences for species that use this environment. The biotic interactions and physical conditions in the aerosphere represent important selection pressures that influence traits such as size and shape of organisms, which in turn facilitate both passive and active displacements. The aerosphere also influences the evolution of behavioral, sensory, metabolic, and respiratory functions of organisms in a myriad of ways. In contrast to organisms that depend strictly on terrestrial or aquatic existence, those that routinely use the aerosphere are almost immediately influenced by changing atmospheric conditions (e.g., winds, air density, precipitation, air temperature), sunlight, polarized light, moon light, and geomagnetic and gravitational forces. The aerosphere has direct and indirect effects on organisms, which often are more strongly influenced than those that spend significant amounts of time on land or in water. Future advances in aeroecology will be made when research conducted by biologists is more fully integrated across temporal and spatial scales in concert with advances made by atmospheric scientists and mathematical modelers. Ultimately, understanding how organisms such as arthropods, birds, and bats aloft are influenced by a dynamic aerosphere will be of importance for assessing, and maintaining ecosystem health, human health, and biodiversity.</dcterms:abstract> <dcterms:rights rdf:resource=""/> <dc:contributor>Wikelski, Martin</dc:contributor> <dc:contributor>Swartz, Sharon M.</dc:contributor> <dc:creator>Jones, Gareth</dc:creator> <dc:creator>Kunz, Thomas H.</dc:creator> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account