KonIQ-10k: Towards an ecologically valid and large-scale IQA database

Thumbnail Image
Date
2018
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Preprint
Publication status
Published
Published in
Abstract
The main challenge in applying state-of-the-art deep learning methods to predict image quality in-the-wild is the relatively small size of existing quality scored datasets. The reason for the lack of larger datasets is the massive resources required in generating diverse and publishable content. We present a new systematic and scalable approach to create large-scale, authentic and diverse image datasets for Image Quality Assessment (IQA). We show how we built an IQA database, KonIQ-10k, consisting of 10,073 images, on which we performed very large scale crowdsourcing experiments in order to obtain reliable quality ratings from 1,467 crowd workers (1.2 million ratings). We argue for its ecological validity by analyzing the diversity of the dataset, by comparing it to state-of-the-art IQA databases, and by checking the reliability of our user studies.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Image database, image quality assessment, diversity sampling, crowdsourcing
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690LIN, Hanhe, Vlad HOSU, Dietmar SAUPE, 2018. KonIQ-10k: Towards an ecologically valid and large-scale IQA database
BibTex
@unpublished{Lin2018-03-22T17:50:05ZKonIQ-42293,
  year={2018},
  title={KonIQ-10k: Towards an ecologically valid and large-scale IQA database},
  author={Lin, Hanhe and Hosu, Vlad and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42293">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dcterms:abstract xml:lang="eng">The main challenge in applying state-of-the-art deep learning methods to predict image quality in-the-wild is the relatively small size of existing quality scored datasets. The reason for the lack of larger datasets is the massive resources required in generating diverse and publishable content. We present a new systematic and scalable approach to create large-scale, authentic and diverse image datasets for Image Quality Assessment (IQA). We show how we built an IQA database, KonIQ-10k, consisting of 10,073 images, on which we performed very large scale crowdsourcing experiments in order to obtain reliable quality ratings from 1,467 crowd workers (1.2 million ratings). We argue for its ecological validity by analyzing the diversity of the dataset, by comparing it to state-of-the-art IQA databases, and by checking the reliability of our user studies.</dcterms:abstract>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>KonIQ-10k: Towards an ecologically valid and large-scale IQA database</dcterms:title>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42293/3/Lin_2-1bwsuooctmuyh0.pdf"/>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42293/3/Lin_2-1bwsuooctmuyh0.pdf"/>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42293"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2018-03-22T17:50:05Z</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-09T13:41:38Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-09T13:41:38Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed