KonIQ-10k: Towards an ecologically valid and large-scale IQA database

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:cbaf1648d9f59c8cb96877a15bacf093

LIN, Hanhe, Vlad HOSU, Dietmar SAUPE, 2018. KonIQ-10k: Towards an ecologically valid and large-scale IQA database

@techreport{Lin2018-03-22T17:50:05ZKonIQ-42293, title={KonIQ-10k: Towards an ecologically valid and large-scale IQA database}, year={2018}, author={Lin, Hanhe and Hosu, Vlad and Saupe, Dietmar} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/42293"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-09T13:41:38Z</dc:date> <dc:contributor>Lin, Hanhe</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42293/3/Lin_2-1bwsuooctmuyh0.pdf"/> <dc:contributor>Hosu, Vlad</dc:contributor> <dcterms:title>KonIQ-10k: Towards an ecologically valid and large-scale IQA database</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42293"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dc:language>eng</dc:language> <dc:creator>Saupe, Dietmar</dc:creator> <dcterms:abstract xml:lang="eng">The main challenge in applying state-of-the-art deep learning methods to predict image quality in-the-wild is the relatively small size of existing quality scored datasets. The reason for the lack of larger datasets is the massive resources required in generating diverse and publishable content. We present a new systematic and scalable approach to create large-scale, authentic and diverse image datasets for Image Quality Assessment (IQA). We show how we built an IQA database, KonIQ-10k, consisting of 10,073 images, on which we performed very large scale crowdsourcing experiments in order to obtain reliable quality ratings from 1,467 crowd workers (1.2 million ratings). We argue for its ecological validity by analyzing the diversity of the dataset, by comparing it to state-of-the-art IQA databases, and by checking the reliability of our user studies.</dcterms:abstract> <dc:creator>Hosu, Vlad</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-09T13:41:38Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:issued>2018-03-22T17:50:05Z</dcterms:issued> <dc:creator>Lin, Hanhe</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42293/3/Lin_2-1bwsuooctmuyh0.pdf"/> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 09.05.2018 (Informationen über die Zugriffsstatistik)

Lin_2-1bwsuooctmuyh0.pdf 60

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto