KOPS - Das Institutionelle Repositorium der Universität Konstanz

Big-Data and Machine Learning to Revamp Computational Toxicology and its Use in Risk Assessment

Big-Data and Machine Learning to Revamp Computational Toxicology and its Use in Risk Assessment

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:11e2cc8328465c27f710f9da48696be9

LUECHTEFELD, Thomas, Craig ROWLANDS, Thomas HARTUNG, 2018. Big-Data and Machine Learning to Revamp Computational Toxicology and its Use in Risk Assessment. In: Toxicology Research. 7(5), pp. 732-744. ISSN 2045-452X. eISSN 2045-4538. Available under: doi: 10.1039/C8TX00051D

@article{Luechtefeld2018BigDa-42268, title={Big-Data and Machine Learning to Revamp Computational Toxicology and its Use in Risk Assessment}, year={2018}, doi={10.1039/C8TX00051D}, number={5}, volume={7}, issn={2045-452X}, journal={Toxicology Research}, pages={732--744}, author={Luechtefeld, Thomas and Rowlands, Craig and Hartung, Thomas} }

Big-Data and Machine Learning to Revamp Computational Toxicology and its Use in Risk Assessment Rowlands, Craig 2018-05-08T13:46:55Z 2018 2018-05-08T13:46:55Z terms-of-use The creation of large toxicological databases and advances in machine-learning techniques have empowered computational approaches in toxicology. Work with these large databases based on regulatory data has allowed reproducibility assessment of animal models, which highlight weaknesses in traditional in vivo methods. This should lower the bars for the introduction of new approaches and represents a benchmark what is achievable for any alternative method validated against these methods. Quantitative Structure Activity Relationships (QSAR) models for skin sensitization, eye irritation, and other human health hazards based on these big databases, however, also have made apparent some of the challenges facing computational modeling, including validation challenges, model interpretation issues, and model selection issues. A first implementation of machine learning-based predictions termed REACHacross achieved unprecedented sensitivities of >80% with specificities >70% in predicting the six most common acute and topical hazards covering about two thirds of the chemical universe. While this is awaiting formal validation, it demonstrates the new quality introduced by big data and modern data-mining technologies. The rapid increase in the diversity and number of computational models, as well as the data they are based on, create challenges and opportunities for the use of computational methods. Hartung, Thomas Rowlands, Craig Hartung, Thomas eng Luechtefeld, Thomas Luechtefeld, Thomas

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto