Combining fractal image compression and vector quantization

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

HAMZAOUI, Raouf, Dietmar SAUPE, 2000. Combining fractal image compression and vector quantization. In: IEEE Transactions on Image Processing. 9(2), pp. 197-208. ISSN 1057-7149. eISSN 1941-0042. Available under: doi: 10.1109/83.821730

@article{Hamzaoui2000Combi-42195, title={Combining fractal image compression and vector quantization}, year={2000}, doi={10.1109/83.821730}, number={2}, volume={9}, issn={1057-7149}, journal={IEEE Transactions on Image Processing}, pages={197--208}, author={Hamzaoui, Raouf and Saupe, Dietmar} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/42195"> <dcterms:title>Combining fractal image compression and vector quantization</dcterms:title> <dcterms:abstract xml:lang="eng">In fractal image compression, the code is an efficient binary representation of a contractive mapping whose unique fixed point approximates the original image. The mapping is typically composed of affine transformations, each approximating a block of the image by another block (called domain block) selected from the same image. The search for a suitable domain block is time-consuming. Moreover, the rate distortion performance of most fractal image coders is not satisfactory. We show how a few fixed vectors designed from a set of training images by a clustering algorithm accelerates the search for the domain blocks and improves both the rate-distortion performance and the decoding speed of a pure fractal coder, when they are used as a supplementary vector quantization codebook. We implemented two quadtree-based schemes: a fast top-down heuristic technique and one optimized with a Lagrange multiplier method. For the 8 bits per pixel (bpp) luminance part of the 512 x 512 Lena image, our best scheme achieved a peak-signal-to-noise ratio of 32.50 dB at 0.25 bpp.</dcterms:abstract> <dc:creator>Saupe, Dietmar</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-28T13:19:39Z</dcterms:available> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-28T13:19:39Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42195"/> <dcterms:issued>2000</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Hamzaoui, Raouf</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Hamzaoui, Raouf</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account