Analyzing Mathematical Content to Detect Academic Plagiarism

Cite This

Files in this item

Checksum: MD5:89e15513f891599d913d4a6a706f5fe9

MEUSCHKE, Norman, Moritz SCHUBOTZ, Felix HAMBORG, Tomas SKOPAL, Bela GIPP, 2017. Analyzing Mathematical Content to Detect Academic Plagiarism. CIKM 2017 : ACM Conference on Information and Knowledge Management. Singapore, Nov 6, 2017 - Nov 10, 2017. In: LIM, Ee-Peng, ed.. CIKM 2017 : proceedings of the 2017 ACM Conference on Information and Knowledge Management : November 6-10, 2017, Singapore. New York, New York, USA:ACM Press, pp. 2211-2214. ISBN 978-1-4503-4918-5. Available under: doi: 10.1145/3132847.3133144

@inproceedings{Meuschke2017Analy-41875, title={Analyzing Mathematical Content to Detect Academic Plagiarism}, year={2017}, doi={10.1145/3132847.3133144}, isbn={978-1-4503-4918-5}, address={New York, New York, USA}, publisher={ACM Press}, booktitle={CIKM 2017 : proceedings of the 2017 ACM Conference on Information and Knowledge Management : November 6-10, 2017, Singapore}, pages={2211--2214}, editor={Lim, Ee-Peng}, author={Meuschke, Norman and Schubotz, Moritz and Hamborg, Felix and Skopal, Tomas and Gipp, Bela} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Skopal, Tomas</dc:contributor> <dc:creator>Meuschke, Norman</dc:creator> <dc:creator>Gipp, Bela</dc:creator> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:title>Analyzing Mathematical Content to Detect Academic Plagiarism</dcterms:title> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource=""/> <dc:creator>Hamborg, Felix</dc:creator> <dc:creator>Schubotz, Moritz</dc:creator> <dc:contributor>Meuschke, Norman</dc:contributor> <dcterms:available rdf:datatype="">2018-03-21T11:01:42Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2017</dcterms:issued> <dcterms:rights rdf:resource=""/> <dc:creator>Skopal, Tomas</dc:creator> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:abstract xml:lang="eng">This paper presents, to our knowledge, the first study on analyzing mathematical expressions to detect academic plagiarism. We make the following contributions. First, we investigate confirmed cases of plagiarism to categorize the similarities of mathematical content commonly found in plagiarized publications. From this investigation, we derive possible feature selection and feature comparison strategies for developing math-based detection approaches and a ground truth for our experiments. Second, we create a test collection by embedding confirmed cases of plagiarism into the NTCIR-11 MathIR Task dataset, which contains approx. 60 million mathematical expressions in 105,120 documents from Third, we develop a first math-based detection approach by implementing and evaluating different feature comparison approaches using an open source parallel data processing pipeline built using the Apache Flink framework. The best performing approach identifies all but two of our real-world test cases at the top rank and achieves a mean reciprocal rank of 0.86. The results show that mathematical expressions are promising text-independent features to identify academic plagiarism in large collections. To facilitate future research on math-based plagiarism detection, we make our source code and data available.</dcterms:abstract> <dc:contributor>Hamborg, Felix</dc:contributor> <dc:contributor>Schubotz, Moritz</dc:contributor> <dcterms:isPartOf rdf:resource=""/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="">2018-03-21T11:01:42Z</dc:date> <dspace:hasBitstream rdf:resource=""/> <bibo:uri rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

Downloads since Mar 21, 2018 (Information about access statistics)

Meuschke_2-wy9aqw7lbcn20.pdf 367

This item appears in the following Collection(s)

Search KOPS


My Account