Pattern Trails : Visual Analysis of Pattern Transitions in Subspaces

Cite This

Files in this item

Checksum: MD5:f756dfa05803cf5147a7d452bc67ebc1

JÄCKLE, Dominik, Michael HUND, Michael BEHRISCH, Daniel A. KEIM, Tobias SCHRECK, 2017. Pattern Trails : Visual Analysis of Pattern Transitions in Subspaces. 2017 IEEE Visualization Conference (VIS). Phoenix, Arizona, USA, Oct 1, 2017 - Oct 6, 2017. In: IEEE Conference on Visual Analytics Science and Technology (VAST)

@inproceedings{Jackle2017Patte-41758, title={Pattern Trails : Visual Analysis of Pattern Transitions in Subspaces}, year={2017}, booktitle={IEEE Conference on Visual Analytics Science and Technology (VAST)}, author={Jäckle, Dominik and Hund, Michael and Behrisch, Michael and Keim, Daniel A. and Schreck, Tobias} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:abstract xml:lang="eng">Subspace analysis methods have gained interest for identifying patterns in subspaces of high-dimensional data. Existing techniques allow to visualize and compare patterns in subspaces. However, many subspace analysis methods produce an abundant amount of patterns, which often remain redundant and are difficult to relate. Creating effective layouts for comparison of subspace patterns remains challenging. We introduce Pattern Trails, a novel approach for visually ordering and comparing subspace patterns. Central to our approach is the notion of pattern transitions as an interpretable structure imposed to order and compare patterns between subspaces. The basic idea is to visualize projections of subspaces side-by-side, and indicate changes between adjacent patterns in the subspaces by a linked representation, hence introducing pattern transitions. Our contributions comprise a systematization for how pairs of subspace patterns can be compared, and how changes can be interpreted in terms of pattern transitions. We also contribute a technique for visual subspace analysis based on a data-driven similarity measure between subspace representations. This measure is useful to order the patterns, and interactively group subspaces to reduce redundancy. We demonstrate the usefulness of our approach by application to several use cases, indicating that data can be meaningfully ordered and interpreted in terms of pattern transitions.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Jäckle, Dominik</dc:contributor> <bibo:uri rdf:resource=""/> <dc:creator>Behrisch, Michael</dc:creator> <dspace:isPartOfCollection rdf:resource=""/> <dc:creator>Schreck, Tobias</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Jäckle, Dominik</dc:creator> <dc:date rdf:datatype="">2018-03-13T13:37:56Z</dc:date> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Behrisch, Michael</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:title>Pattern Trails : Visual Analysis of Pattern Transitions in Subspaces</dcterms:title> <dcterms:isPartOf rdf:resource=""/> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource=""/> <dcterms:rights rdf:resource=""/> <dspace:hasBitstream rdf:resource=""/> <dcterms:issued>2017</dcterms:issued> <dc:contributor>Hund, Michael</dc:contributor> <dcterms:available rdf:datatype="">2018-03-13T13:37:56Z</dcterms:available> <dc:creator>Hund, Michael</dc:creator> </rdf:Description> </rdf:RDF>

Downloads since Mar 13, 2018 (Information about access statistics)

Jaeckle_2-9me9fwxo3v9j2.pdf 319

This item appears in the following Collection(s)

Search KOPS


My Account