Visual Integration of Data and Model Space in Ensemble Learning

Cite This

Files in this item

Checksum: MD5:8d9df80d50ee9d0480fe0d41e9381786

SCHNEIDER, Bruno, Dominik JÄCKLE, Florian STOFFEL, Alexandra DIEHL, Johannes FUCHS, Daniel KEIM, 2017. Visual Integration of Data and Model Space in Ensemble Learning. 2017 IEEE Visualization Conference (VIS). Phoenix, Arizona, USA, Oct 1, 2017 - Oct 6, 2017. In: Symposium on Visualization in Data Science (VDS) at IEEE VIS 2017

@inproceedings{Schneider2017Visua-41755, title={Visual Integration of Data and Model Space in Ensemble Learning}, year={2017}, booktitle={Symposium on Visualization in Data Science (VDS) at IEEE VIS 2017}, author={Schneider, Bruno and Jäckle, Dominik and Stoffel, Florian and Diehl, Alexandra and Fuchs, Johannes and Keim, Daniel}, note={Best paper award} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:creator>Fuchs, Johannes</dc:creator> <dcterms:title>Visual Integration of Data and Model Space in Ensemble Learning</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Stoffel, Florian</dc:creator> <dcterms:abstract xml:lang="eng">Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack in comprehensibility, posing a challenge to understand how each model affects the classification outputs and where the errors come from. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce a workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. We then present a use case in which we start with an ensemble automatically selected by a standard ensemble selection algorithm, and show how we can manipulate models and alternative combinations.</dcterms:abstract> <dcterms:isPartOf rdf:resource=""/> <dcterms:available rdf:datatype="">2018-03-13T12:43:30Z</dcterms:available> <dc:language>eng</dc:language> <dc:contributor>Keim, Daniel</dc:contributor> <bibo:uri rdf:resource=""/> <dc:contributor>Fuchs, Johannes</dc:contributor> <dc:creator>Keim, Daniel</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Jäckle, Dominik</dc:creator> <dcterms:issued>2017</dcterms:issued> <dcterms:rights rdf:resource=""/> <dc:date rdf:datatype="">2018-03-13T12:43:30Z</dc:date> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Diehl, Alexandra</dc:contributor> <dc:creator>Schneider, Bruno</dc:creator> <dcterms:hasPart rdf:resource=""/> <dc:contributor>Jäckle, Dominik</dc:contributor> <dc:contributor>Stoffel, Florian</dc:contributor> <dc:creator>Diehl, Alexandra</dc:creator> <dc:contributor>Schneider, Bruno</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Mar 13, 2018 (Information about access statistics)

Schneider_2-1k78ydsr7mgss7.pdf 264

This item appears in the following Collection(s)

Search KOPS


My Account