Active learning machine learns to create new quantum experiments

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

MELNIKOV, Alexey A., Hendrik POULSEN NAUTRUP, Mario KRENN, Vedran DUNJKO, Markus TIERSCH, Anton ZEILINGER, Hans BRIEGEL, 2018. Active learning machine learns to create new quantum experiments. In: Proceedings of the National Academy of Sciences of the United States of America. 115(6), pp. 1221-1226. ISSN 0027-8424. eISSN 1091-6490. Available under: doi: 10.1073/pnas.1714936115

@article{Melnikov2018Activ-41712, title={Active learning machine learns to create new quantum experiments}, year={2018}, doi={10.1073/pnas.1714936115}, number={6}, volume={115}, issn={0027-8424}, journal={Proceedings of the National Academy of Sciences of the United States of America}, pages={1221--1226}, author={Melnikov, Alexey A. and Poulsen Nautrup, Hendrik and Krenn, Mario and Dunjko, Vedran and Tiersch, Markus and Zeilinger, Anton and Briegel, Hans} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Tiersch, Markus</dc:contributor> <dcterms:isPartOf rdf:resource=""/> <dc:contributor>Krenn, Mario</dc:contributor> <dcterms:title>Active learning machine learns to create new quantum experiments</dcterms:title> <bibo:uri rdf:resource=""/> <dc:contributor>Poulsen Nautrup, Hendrik</dc:contributor> <dc:creator>Zeilinger, Anton</dc:creator> <dc:contributor>Dunjko, Vedran</dc:contributor> <dcterms:issued>2018</dcterms:issued> <dc:creator>Poulsen Nautrup, Hendrik</dc:creator> <dc:creator>Briegel, Hans</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Melnikov, Alexey A.</dc:creator> <dc:date rdf:datatype="">2018-03-07T10:35:47Z</dc:date> <dcterms:abstract xml:lang="eng">How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.</dcterms:abstract> <dc:contributor>Zeilinger, Anton</dc:contributor> <dc:creator>Tiersch, Markus</dc:creator> <dc:creator>Dunjko, Vedran</dc:creator> <dc:contributor>Briegel, Hans</dc:contributor> <dcterms:available rdf:datatype="">2018-03-07T10:35:47Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Melnikov, Alexey A.</dc:contributor> <dc:creator>Krenn, Mario</dc:creator> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account