A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper presents the results of the depth estimation challenge for dense light fields, which took place at the second workshop on Light Fields for Computer Vision (LF4CV) in conjunction with CVPR 2017. The challenge consisted of submission to a recent benchmark [7], which allows a thorough performance analysis. While individual results are readily available on the benchmark web page http://www.lightfield-analysis.net, we take this opportunity to give a detailed overview of the current participants. Based on the algorithms submitted to our challenge, we develop a taxonomy of light field disparity estimation algorithms and give a report on the current state-of-the-art. In addition, we include more comparative metrics, and discuss the relative strengths and weaknesses of the algorithms. Thus, we obtain a snapshot of where light field algorithm development stands at the moment and identify aspects with potential for further improvement.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JOHANNSEN, Ole, Katrin HONAUER, Bastian GOLDLÜCKE, Anna ALPEROVICH, Federica BATTISTI, Yunsu BOK, Michele BRIZZI, Marco CARLI, Michael STRECKE, Antonin SULC, 2017. A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Proceedings. Honolulu, HI, USA, 21. Juli 2017 - 26. Juli 2017. In: CVPRW 2017 : 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops : proceedings : 21-26 July 2016, Honolulu, Hawaii. Piscataway, NJ: IEEE, 2017, pp. 1795-1812. eISSN 2160-7516. ISBN 978-1-5386-0733-6. Available under: doi: 10.1109/CVPRW.2017.226BibTex
@inproceedings{Johannsen2017-07Taxon-41509, year={2017}, doi={10.1109/CVPRW.2017.226}, title={A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms}, isbn={978-1-5386-0733-6}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={CVPRW 2017 : 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops : proceedings : 21-26 July 2016, Honolulu, Hawaii}, pages={1795--1812}, author={Johannsen, Ole and Honauer, Katrin and Goldlücke, Bastian and Alperovich, Anna and Battisti, Federica and Bok, Yunsu and Brizzi, Michele and Carli, Marco and Strecke, Michael and Sulc, Antonin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41509"> <dc:contributor>Battisti, Federica</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41509"/> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dcterms:abstract xml:lang="eng">This paper presents the results of the depth estimation challenge for dense light fields, which took place at the second workshop on Light Fields for Computer Vision (LF4CV) in conjunction with CVPR 2017. The challenge consisted of submission to a recent benchmark [7], which allows a thorough performance analysis. While individual results are readily available on the benchmark web page http://www.lightfield-analysis.net, we take this opportunity to give a detailed overview of the current participants. Based on the algorithms submitted to our challenge, we develop a taxonomy of light field disparity estimation algorithms and give a report on the current state-of-the-art. In addition, we include more comparative metrics, and discuss the relative strengths and weaknesses of the algorithms. Thus, we obtain a snapshot of where light field algorithm development stands at the moment and identify aspects with potential for further improvement.</dcterms:abstract> <dc:contributor>Alperovich, Anna</dc:contributor> <dc:creator>Strecke, Michael</dc:creator> <dc:creator>Alperovich, Anna</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-21T08:50:44Z</dcterms:available> <dc:contributor>Sulc, Antonin</dc:contributor> <dc:contributor>Bok, Yunsu</dc:contributor> <dcterms:title>A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms</dcterms:title> <dc:creator>Honauer, Katrin</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Brizzi, Michele</dc:contributor> <dc:contributor>Johannsen, Ole</dc:contributor> <dc:contributor>Honauer, Katrin</dc:contributor> <dc:creator>Carli, Marco</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Bok, Yunsu</dc:creator> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:creator>Johannsen, Ole</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-21T08:50:44Z</dc:date> <dc:contributor>Strecke, Michael</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Brizzi, Michele</dc:creator> <dc:contributor>Carli, Marco</dc:contributor> <dc:creator>Battisti, Federica</dc:creator> <dcterms:issued>2017-07</dcterms:issued> <dc:creator>Sulc, Antonin</dc:creator> </rdf:Description> </rdf:RDF>