A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Honauer, Katrin
Battisti, Federica
Bok, Yunsu
Brizzi, Michele
Carli, Marco
et al.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 336978
Projekt
LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
CVPRW 2017 : 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops : proceedings : 21-26 July 2016, Honolulu, Hawaii. Piscataway, NJ: IEEE, 2017, pp. 1795-1812. eISSN 2160-7516. ISBN 978-1-5386-0733-6. Available under: doi: 10.1109/CVPRW.2017.226
Zusammenfassung

This paper presents the results of the depth estimation challenge for dense light fields, which took place at the second workshop on Light Fields for Computer Vision (LF4CV) in conjunction with CVPR 2017. The challenge consisted of submission to a recent benchmark [7], which allows a thorough performance analysis. While individual results are readily available on the benchmark web page http://www.lightfield-analysis.net, we take this opportunity to give a detailed overview of the current participants. Based on the algorithms submitted to our challenge, we develop a taxonomy of light field disparity estimation algorithms and give a report on the current state-of-the-art. In addition, we include more comparative metrics, and discuss the relative strengths and weaknesses of the algorithms. Thus, we obtain a snapshot of where light field algorithm development stands at the moment and identify aspects with potential for further improvement.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Proceedings, 21. Juli 2017 - 26. Juli 2017, Honolulu, HI, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690JOHANNSEN, Ole, Katrin HONAUER, Bastian GOLDLÜCKE, Anna ALPEROVICH, Federica BATTISTI, Yunsu BOK, Michele BRIZZI, Marco CARLI, Michael STRECKE, Antonin SULC, 2017. A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Proceedings. Honolulu, HI, USA, 21. Juli 2017 - 26. Juli 2017. In: CVPRW 2017 : 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops : proceedings : 21-26 July 2016, Honolulu, Hawaii. Piscataway, NJ: IEEE, 2017, pp. 1795-1812. eISSN 2160-7516. ISBN 978-1-5386-0733-6. Available under: doi: 10.1109/CVPRW.2017.226
BibTex
@inproceedings{Johannsen2017-07Taxon-41509,
  year={2017},
  doi={10.1109/CVPRW.2017.226},
  title={A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms},
  isbn={978-1-5386-0733-6},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={CVPRW 2017 : 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops : proceedings : 21-26 July 2016, Honolulu, Hawaii},
  pages={1795--1812},
  author={Johannsen, Ole and Honauer, Katrin and Goldlücke, Bastian and Alperovich, Anna and Battisti, Federica and Bok, Yunsu and Brizzi, Michele and Carli, Marco and Strecke, Michael and Sulc, Antonin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41509">
    <dc:contributor>Battisti, Federica</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41509"/>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dcterms:abstract xml:lang="eng">This paper presents the results of the depth estimation challenge for dense light fields, which took place at the second workshop on Light Fields for Computer Vision (LF4CV) in conjunction with CVPR 2017. The challenge consisted of submission to a recent benchmark [7], which allows a thorough performance analysis. While individual results are readily available on the benchmark web page http://www.lightfield-analysis.net, we take this opportunity to give a detailed overview of the current participants. Based on the algorithms submitted to our challenge, we develop a taxonomy of light field disparity estimation algorithms and give a report on the current state-of-the-art. In addition, we include more comparative metrics, and discuss the relative strengths and weaknesses of the algorithms. Thus, we obtain a snapshot of where light field algorithm development stands at the moment and identify aspects with potential for further improvement.</dcterms:abstract>
    <dc:contributor>Alperovich, Anna</dc:contributor>
    <dc:creator>Strecke, Michael</dc:creator>
    <dc:creator>Alperovich, Anna</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-21T08:50:44Z</dcterms:available>
    <dc:contributor>Sulc, Antonin</dc:contributor>
    <dc:contributor>Bok, Yunsu</dc:contributor>
    <dcterms:title>A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms</dcterms:title>
    <dc:creator>Honauer, Katrin</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Brizzi, Michele</dc:contributor>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <dc:contributor>Honauer, Katrin</dc:contributor>
    <dc:creator>Carli, Marco</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Bok, Yunsu</dc:creator>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:creator>Johannsen, Ole</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-21T08:50:44Z</dc:date>
    <dc:contributor>Strecke, Michael</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Brizzi, Michele</dc:creator>
    <dc:contributor>Carli, Marco</dc:contributor>
    <dc:creator>Battisti, Federica</dc:creator>
    <dcterms:issued>2017-07</dcterms:issued>
    <dc:creator>Sulc, Antonin</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen