Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework
Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework
Date
2018
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
IEEE Transactions on Visualization and Computer Graphics ; 24 (2018), 1. - pp. 382-391. - ISSN 1077-2626. - eISSN 1941-0506
Abstract
Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Topic Model Configuration, Reinforcement Learning, Feature Detection and Tracking, Iterative Optimization
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
EL-ASSADY, Mennatallah, Rita SEVASTJANOVA, Fabian SPERRLE, Daniel A. KEIM, Christopher COLLINS, 2018. Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework. In: IEEE Transactions on Visualization and Computer Graphics. 24(1), pp. 382-391. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2017.2745080BibTex
@article{ElAssady2018-01Progr-41238, year={2018}, doi={10.1109/TVCG.2017.2745080}, title={Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework}, number={1}, volume={24}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={382--391}, author={El-Assady, Mennatallah and Sevastjanova, Rita and Sperrle, Fabian and Keim, Daniel A. and Collins, Christopher} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41238"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T10:19:48Z</dc:date> <dc:creator>Sperrle, Fabian</dc:creator> <dc:contributor>Sperrle, Fabian</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Collins, Christopher</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41238"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T10:19:48Z</dcterms:available> <dc:creator>Sevastjanova, Rita</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2018-01</dcterms:issued> <dc:contributor>Sevastjanova, Rita</dc:contributor> <dc:creator>Collins, Christopher</dc:creator> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41238/1/El-Assady_2-8cb30e3r5itp3.pdf"/> <dcterms:title>Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework</dcterms:title> <dc:creator>El-Assady, Mennatallah</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41238/1/El-Assady_2-8cb30e3r5itp3.pdf"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes