Type of Publication: | Journal article |
Publication status: | Published |
Author: | Ciaramella, Gabriele; Borzì, Alfio |
Year of publication: | 2015 |
Published in: | Computer Physics Communications ; 190 (2015). - pp. 213-223. - ISSN 0010-4655. - eISSN 1879-2944 |
DOI (citable link): | https://dx.doi.org/10.1016/j.cpc.2015.01.006 |
Summary: |
The modeling and control of Ising spin systems is of fundamental importance in NMR spectroscopy applications. In this paper, two computer packages, ReHaG and SKRYN, are presented. Their purpose is to set-up and solve quantum optimal control problems governed by the Liouville master equation modeling Ising spin- 1/2 systems with pointwise control constraints. In particular, the MATLAB package ReHaG allows to compute a real matrix representation of the master equation. The MATLAB package SKRYN implements a new strategy resulting in a globalized semismooth matrix-free Krylov–Newton scheme. To discretize the real representation of the Liouville master equation, a norm-preserving modified Crank–Nicolson scheme is used. Results of numerical experiments demonstrate that the SKRYN code is able to provide fast and accurate solutions to the Ising spin quantum optimization problem.
|
Subject (DDC): | 510 Mathematics |
Keywords: | Quantum systems; Optimal control theory; Optimality conditions; Semismooth Newton scheme; Pointwise control constraint |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
CIARAMELLA, Gabriele, Alfio BORZÌ, 2015. SKRYN : A fast semismooth-Krylov–Newton method for controlling Ising spin systems. In: Computer Physics Communications. 190, pp. 213-223. ISSN 0010-4655. eISSN 1879-2944. Available under: doi: 10.1016/j.cpc.2015.01.006
@article{Ciaramella2015-05SKRYN-41207, title={SKRYN : A fast semismooth-Krylov–Newton method for controlling Ising spin systems}, year={2015}, doi={10.1016/j.cpc.2015.01.006}, volume={190}, issn={0010-4655}, journal={Computer Physics Communications}, pages={213--223}, author={Ciaramella, Gabriele and Borzì, Alfio} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/41207"> <dcterms:title>SKRYN : A fast semismooth-Krylov–Newton method for controlling Ising spin systems</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-02T10:34:43Z</dcterms:available> <dc:creator>Borzì, Alfio</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Ciaramella, Gabriele</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-02T10:34:43Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41207"/> <dcterms:issued>2015-05</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Ciaramella, Gabriele</dc:creator> <dc:contributor>Borzì, Alfio</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">The modeling and control of Ising spin systems is of fundamental importance in NMR spectroscopy applications. In this paper, two computer packages, ReHaG and SKRYN, are presented. Their purpose is to set-up and solve quantum optimal control problems governed by the Liouville master equation modeling Ising spin- 1/2 systems with pointwise control constraints. In particular, the MATLAB package ReHaG allows to compute a real matrix representation of the master equation. The MATLAB package SKRYN implements a new strategy resulting in a globalized semismooth matrix-free Krylov–Newton scheme. To discretize the real representation of the Liouville master equation, a norm-preserving modified Crank–Nicolson scheme is used. Results of numerical experiments demonstrate that the SKRYN code is able to provide fast and accurate solutions to the Ising spin quantum optimization problem.</dcterms:abstract> </rdf:Description> </rdf:RDF>