Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Contribution to a conference collection |
Publication status: | Published |
Author: | Kahlbacher, Martin; Volkwein, Stefan |
Year of publication: | 2008 |
Conference: | ENUMATH 2007 : the 7th European Conference on Numerical Mathematics and Advanced Applications, Sep 10, 2007 - Sep 14, 2007, Graz, Austria |
Published in: | Numerical Mathematics and Advanced Applications : Proceedings of ENUMATH 2007 / Kunisch, Karl; Of, Günther; Steinbach, Olaf (ed.). - Berlin : Springer, 2008. - pp. 727-734. - ISBN 978-3-540-69776-3 |
DOI (citable link): | https://dx.doi.org/10.1007/978-3-540-69777-0_87 |
Summary: |
Proper orthogonal decomposition (POD) is a powerful technique for model reduction of linear and non-linear systems. It is based on a Galerkin type discretization with basis elements created from the system itself. In this work POD is applied to estimate scalar parameters in a scalar non-linear Ginzburg-Landau equation. The parameter estimation is formulated in terms of an optimal control problem that is solved by an augmented Lagrangian method combined with a sequential quadratic programming algorithm. A numerical example illustrates the efficiency of the proposed solution method.
|
Subject (DDC): | 510 Mathematics |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
KAHLBACHER, Martin, Stefan VOLKWEIN, 2008. Estimation of Diffusion Coefficients in a Scalar Ginzburg-Landau Equation by Using Model Reduction. ENUMATH 2007 : the 7th European Conference on Numerical Mathematics and Advanced Applications. Graz, Austria, Sep 10, 2007 - Sep 14, 2007. In: KUNISCH, Karl, ed., Günther OF, ed., Olaf STEINBACH, ed.. Numerical Mathematics and Advanced Applications : Proceedings of ENUMATH 2007. Berlin:Springer, pp. 727-734. ISBN 978-3-540-69776-3. Available under: doi: 10.1007/978-3-540-69777-0_87
@inproceedings{Kahlbacher2008Estim-41198, title={Estimation of Diffusion Coefficients in a Scalar Ginzburg-Landau Equation by Using Model Reduction}, year={2008}, doi={10.1007/978-3-540-69777-0_87}, isbn={978-3-540-69776-3}, address={Berlin}, publisher={Springer}, booktitle={Numerical Mathematics and Advanced Applications : Proceedings of ENUMATH 2007}, pages={727--734}, editor={Kunisch, Karl and Of, Günther and Steinbach, Olaf}, author={Kahlbacher, Martin and Volkwein, Stefan} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/41198"> <dc:language>eng</dc:language> <dc:contributor>Kahlbacher, Martin</dc:contributor> <dcterms:abstract xml:lang="eng">Proper orthogonal decomposition (POD) is a powerful technique for model reduction of linear and non-linear systems. It is based on a Galerkin type discretization with basis elements created from the system itself. In this work POD is applied to estimate scalar parameters in a scalar non-linear Ginzburg-Landau equation. The parameter estimation is formulated in terms of an optimal control problem that is solved by an augmented Lagrangian method combined with a sequential quadratic programming algorithm. A numerical example illustrates the efficiency of the proposed solution method.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:title>Estimation of Diffusion Coefficients in a Scalar Ginzburg-Landau Equation by Using Model Reduction</dcterms:title> <dc:creator>Volkwein, Stefan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-01T15:47:16Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-01T15:47:16Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41198"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kahlbacher, Martin</dc:creator> <dcterms:issued>2008</dcterms:issued> <dc:contributor>Volkwein, Stefan</dc:contributor> </rdf:Description> </rdf:RDF>