Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Journal article |
Publication status: | Published |
Author: | Hinze, Michael; Volkwein, Stefan |
Year of publication: | 2008 |
Published in: | Computational Optimization and Applications ; 39 (2008), 3. - pp. 319-345. - ISSN 0926-6003. - eISSN 1573-2894 |
DOI (citable link): | https://dx.doi.org/10.1007/s10589-007-9058-4 |
Summary: |
In this paper we investigate POD discretizations of abstract linear–quadratic optimal control problems with control constraints. We apply the discrete technique developed by Hinze (Comput. Optim. Appl. 30:45–61, 2005) and prove error estimates for the corresponding discrete controls, where we combine error estimates for the state and the adjoint system from Kunisch and Volkwein (Numer. Math. 90:117–148, 2001; SIAM J. Numer. Anal. 40:492–515, 2002). Finally, we present numerical examples that illustrate the theoretical results.
|
Subject (DDC): | 510 Mathematics |
Keywords: | Optimal control, Evolution problems, Proper orthogonal decomposition, Error estimates |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
HINZE, Michael, Stefan VOLKWEIN, 2008. Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition. In: Computational Optimization and Applications. 39(3), pp. 319-345. ISSN 0926-6003. eISSN 1573-2894. Available under: doi: 10.1007/s10589-007-9058-4
@article{Hinze2008-04Error-41197, title={Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition}, year={2008}, doi={10.1007/s10589-007-9058-4}, number={3}, volume={39}, issn={0926-6003}, journal={Computational Optimization and Applications}, pages={319--345}, author={Hinze, Michael and Volkwein, Stefan} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/41197"> <dcterms:issued>2008-04</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Volkwein, Stefan</dc:creator> <dc:creator>Hinze, Michael</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-01T15:41:37Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41197"/> <dc:contributor>Volkwein, Stefan</dc:contributor> <dcterms:title>Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Hinze, Michael</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-01T15:41:37Z</dcterms:available> <dcterms:abstract xml:lang="eng">In this paper we investigate POD discretizations of abstract linear–quadratic optimal control problems with control constraints. We apply the discrete technique developed by Hinze (Comput. Optim. Appl. 30:45–61, 2005) and prove error estimates for the corresponding discrete controls, where we combine error estimates for the state and the adjoint system from Kunisch and Volkwein (Numer. Math. 90:117–148, 2001; SIAM J. Numer. Anal. 40:492–515, 2002). Finally, we present numerical examples that illustrate the theoretical results.</dcterms:abstract> </rdf:Description> </rdf:RDF>