Schouten tensor equations in conformal geometry with prescribed boundary metric
Schouten tensor equations in conformal geometry with prescribed boundary metric
Date
2005
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Electronic Journal of Differential Equations (EJDE) ; 2005. - 81. - eISSN 1072-6691
Abstract
We deform the metric conformally on a manifold with boundary. This induces a deformation of the Schouten tensor. We fix the metric at the boundary and realize a prescribed value for the product of the eigenvalues of the Schouten tensor in the interior, provided that there exists a subsolution. This problem reduces to a Monge-Amp`ere equation with gradient terms. The main issue is to obtain a priori estimates for the second derivatives near the boundary.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Schouten tensor; fully nonlinear equation; conformal geometry; Dirichlet boundary value problem
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
SCHNÜRER, Oliver C., 2005. Schouten tensor equations in conformal geometry with prescribed boundary metric. In: Electronic Journal of Differential Equations (EJDE), 81. eISSN 1072-6691BibTex
@article{Schnurer2005Schou-41193, year={2005}, title={Schouten tensor equations in conformal geometry with prescribed boundary metric}, url={https://eudml.org/doc/125235}, journal={Electronic Journal of Differential Equations (EJDE)}, author={Schnürer, Oliver C.}, note={Article Number: 81} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41193"> <dcterms:abstract xml:lang="eng">We deform the metric conformally on a manifold with boundary. This induces a deformation of the Schouten tensor. We fix the metric at the boundary and realize a prescribed value for the product of the eigenvalues of the Schouten tensor in the interior, provided that there exists a subsolution. This problem reduces to a Monge-Amp`ere equation with gradient terms. The main issue is to obtain a priori estimates for the second derivatives near the boundary.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41193/1/Schnuerer_2-bg0bpg5ko7ny0.pdf"/> <dc:language>eng</dc:language> <dcterms:title>Schouten tensor equations in conformal geometry with prescribed boundary metric</dcterms:title> <dc:contributor>Schnürer, Oliver C.</dc:contributor> <dc:creator>Schnürer, Oliver C.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-01T15:28:37Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41193/1/Schnuerer_2-bg0bpg5ko7ny0.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41193"/> <dcterms:issued>2005</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-01T15:28:37Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
URL of original publication
Test date of URL
2018-01-15
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No