Type of Publication: | Journal article |
Publication status: | Published |
Author: | Denk, Robert; Kupper, Michael; Nendel, Max |
Year of publication: | 2020 |
Published in: | Stochastic Processes and their Applications ; 130 (2020), 3. - pp. 1616-1642. - Elsevier. - ISSN 0304-4149. - eISSN 1879-209X |
ArXiv-ID: | arXiv:1710.08130 |
DOI (citable link): | https://dx.doi.org/10.1016/j.spa.2019.05.009 |
Summary: |
We study the relation between Lévy processes under nonlinear expectations, nonlinear semigroups and fully nonlinear PDEs. First, we establish a one-to-one relation between nonlinear Lévy processes and nonlinear Markovian convolution semigroups. Second, we provide a condition on a family of infinitesimal generators (Aλ)λ∈Λ of linear Lévy processes which guarantees the existence of a nonlinear Lévy process such that the corresponding nonlinear Markovian convolution semigroup is a viscosity solution of the fully nonlinear PDE ∂tu=supλ∈ΛAλu . The results are illustrated with several examples.
|
MSC Classification: | 60G51, 49L25, 47H20 |
Subject (DDC): | 510 Mathematics |
Keywords: | Lévy process; Convex expectation space; Markovian convolution semigroup; Fully nonlinear PDE; Nisio semigroup |
Bibliography of Konstanz: | Yes |
Refereed: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
DENK, Robert, Michael KUPPER, Max NENDEL, 2020. A semigroup approach to nonlinear Lévy processes. In: Stochastic Processes and their Applications. Elsevier. 130(3), pp. 1616-1642. ISSN 0304-4149. eISSN 1879-209X. Available under: doi: 10.1016/j.spa.2019.05.009
@article{Denk2020semig-40474.2, title={A semigroup approach to nonlinear Lévy processes}, year={2020}, doi={10.1016/j.spa.2019.05.009}, number={3}, volume={130}, issn={0304-4149}, journal={Stochastic Processes and their Applications}, pages={1616--1642}, author={Denk, Robert and Kupper, Michael and Nendel, Max} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/40474.2"> <dc:contributor>Denk, Robert</dc:contributor> <dcterms:title>A semigroup approach to nonlinear Lévy processes</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2020</dcterms:issued> <dc:creator>Denk, Robert</dc:creator> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40474.2"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:37:11Z</dcterms:available> <dc:contributor>Kupper, Michael</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Kupper, Michael</dc:creator> <dcterms:abstract xml:lang="eng">We study the relation between Lévy processes under nonlinear expectations, nonlinear semigroups and fully nonlinear PDEs. First, we establish a one-to-one relation between nonlinear Lévy processes and nonlinear Markovian convolution semigroups. Second, we provide a condition on a family of infinitesimal generators (Aλ)λ∈Λ of linear Lévy processes which guarantees the existence of a nonlinear Lévy process such that the corresponding nonlinear Markovian convolution semigroup is a viscosity solution of the fully nonlinear PDE ∂tu=supλ∈ΛAλu . The results are illustrated with several examples.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:37:11Z</dc:date> <dc:creator>Nendel, Max</dc:creator> <dc:contributor>Nendel, Max</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>