Uncertainty-aware Visual Analytics for Spatio-temporal Data Exploration


Dateien zu dieser Ressource

Prüfsumme: MD5:a52789724ccbb62c92d60cb3cc1adabd

SENARATNE, Hansi Vihara, 2017. Uncertainty-aware Visual Analytics for Spatio-temporal Data Exploration [Dissertation]. Konstanz: University of Konstanz

@phdthesis{Senaratne2017Uncer-40096, title={Uncertainty-aware Visual Analytics for Spatio-temporal Data Exploration}, year={2017}, author={Senaratne, Hansi Vihara}, address={Konstanz}, school={Universität Konstanz} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/40096"> <dcterms:title>Uncertainty-aware Visual Analytics for Spatio-temporal Data Exploration</dcterms:title> <dcterms:abstract xml:lang="eng">Uncertainty in spatio-temporal data is described as the discrepancy between a measured value of an object and the true value of that object. Common causes of uncertainty in data can be identi ed as errors of precision in the data measurement devices, inadequate domain knowledge of the data collector, absence of gatekeepers etc., known in this dissertation as inherent or source uncertainties. These inherent uncertainties further vary depending on the type of data (e.g., geotagged text or image data), as well as the explicit and implicit nature of the spatial dimension in the data. Static and dynamic visualisation methods have been used to communicate uncertainties. However, a gap we see in such uncertainty visualisations is that users have little to no leeway of controlling the system outcomes (e.g., by weighing in their domain expertise, control to what extent uncertainty plays a role in the analysis, or reduce uncertainty in the data). Visual analytics help to fill this gap by allowing the user to steer the analysis process through interaction. The challenge of uncertainty analysis with visual analytics is that we not only have to encounter the inherent data uncertainties, but also the uncertainties that keep propagating through every component in a visual analytics system (the data, data models, data visualisations and model-visualisation couplings), and through every interaction from the user. To address this challenge, this dissertation introduces a framework that de fines the role of uncertainty throughout the visual analytics knowledge generation process. At each component of the visual analytics system, guidelines in terms of methods are specifi ed for assessing the uncertainties. Following this framework, four novel visual analytics approaches are introduced that enable a user to explore, assess, and mitigate context-specifi c uncertainties in heterogeneous data types: image data, text data, location data, and numerical data. By enabling a strong interaction between the user and the system, uncertainties are mitigated and trustworthy knowledge is extracted, thereby bridging the gap identi fied in static and dynamic uncertainty visualisations. The approaches developed are evaluated against anecdotal evidences and a usability experiment.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40096/3/Senaratne_0-424125.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-09-18T11:13:35Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:issued>2017</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40096"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="http://nbn-resolving.de/urn:nbn:de:bsz:352-20150914100631302-4485392-8"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40096/3/Senaratne_0-424125.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Senaratne, Hansi Vihara</dc:creator> <dc:contributor>Senaratne, Hansi Vihara</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-09-18T11:13:35Z</dc:date> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 18.09.2017 (Informationen über die Zugriffsstatistik)

Senaratne_0-424125.pdf 31

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto