Type of Publication: | Contribution to a conference collection |
Publication status: | Published |
Author: | Erra, Ugo; Frola, Bernardino; Scarano, Vittorio; Couzin, Iain D. |
Year of publication: | 2009 |
Conference: | High Performance Computational Systems Biology, Oct 14, 2009 - Aug 16, 2017, Trento, Italy |
Published in: | 2009 International Workshop on High Performance Computational Systems Biology : (HiBi 2009) ; Trento, Italy, 14 - 16 October 2009. - Piscataway, NJ : IEEE, 2009. - pp. 51-58. - ISBN 978-0-7695-3809-9 |
DOI (citable link): | https://dx.doi.org/10.1109/HiBi.2009.11 |
Summary: |
In this work we describe a GPU implementation for an individual-based model for fish schooling. In this model each fish aligns its position and orientation with an appropriate average of its neighbors' positions and orientations. This carries a very high computational cost in the so-called nearest neighbors search. By leveraging the GPU processing power and the new programming model called CUDA we implement an efficient framework which permits to simulate the collective motion of high-density individual groups. In particular we ...
|
Subject (DDC): | 570 Biosciences, Biology |
Keywords: | large scale simulation, gpu, individual-based model |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
ERRA, Ugo, Bernardino FROLA, Vittorio SCARANO, Iain D. COUZIN, 2009. An Efficient GPU Implementation for Large Scale Individual-Based Simulation of Collective Behavior. High Performance Computational Systems Biology. Trento, Italy, Oct 14, 2009 - Aug 16, 2017. In: 2009 International Workshop on High Performance Computational Systems Biology : (HiBi 2009) ; Trento, Italy, 14 - 16 October 2009. Piscataway, NJ:IEEE, pp. 51-58. ISBN 978-0-7695-3809-9. Available under: doi: 10.1109/HiBi.2009.11
@inproceedings{Erra2009Effic-39873, title={An Efficient GPU Implementation for Large Scale Individual-Based Simulation of Collective Behavior}, year={2009}, doi={10.1109/HiBi.2009.11}, isbn={978-0-7695-3809-9}, address={Piscataway, NJ}, publisher={IEEE}, booktitle={2009 International Workshop on High Performance Computational Systems Biology : (HiBi 2009) ; Trento, Italy, 14 - 16 October 2009}, pages={51--58}, author={Erra, Ugo and Frola, Bernardino and Scarano, Vittorio and Couzin, Iain D.} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39873"> <dc:language>eng</dc:language> <dc:contributor>Erra, Ugo</dc:contributor> <dc:creator>Erra, Ugo</dc:creator> <dc:contributor>Frola, Bernardino</dc:contributor> <dc:creator>Frola, Bernardino</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:contributor>Couzin, Iain D.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-16T13:14:57Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-16T13:14:57Z</dc:date> <dc:contributor>Scarano, Vittorio</dc:contributor> <dc:creator>Couzin, Iain D.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39873"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:creator>Scarano, Vittorio</dc:creator> <dcterms:title>An Efficient GPU Implementation for Large Scale Individual-Based Simulation of Collective Behavior</dcterms:title> <dcterms:abstract xml:lang="eng">In this work we describe a GPU implementation for an individual-based model for fish schooling. In this model each fish aligns its position and orientation with an appropriate average of its neighbors' positions and orientations. This carries a very high computational cost in the so-called nearest neighbors search. By leveraging the GPU processing power and the new programming model called CUDA we implement an efficient framework which permits to simulate the collective motion of high-density individual groups. In particular we ...</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2009</dcterms:issued> </rdf:Description> </rdf:RDF>