Type of Publication: | Journal article |
Publication status: | Published |
Author: | Pokojovy, Michael |
Year of publication: | 2015 |
Published in: | Mathematical Methods in the Applied Sciences ; 38 (2015), 7. - pp. 1225-1246. - ISSN 0170-4214. - eISSN 1099-1476 |
ArXiv-ID: | arXiv:1401.5669 |
DOI (citable link): | https://dx.doi.org/10.1002/mma.3140 |
Summary: |
In the present article, we consider a thermoelastic plate of Reissner–Mindlin–Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absence of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, and so on. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending component is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovskiĭ operator for irrotational vector fields, which we discuss in the appendix.
|
Subject (DDC): | 510 Mathematics |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
POKOJOVY, Michael, 2015. On stability of hyperbolic thermoelastic Reissner–Mindlin–Timoshenko plates. In: Mathematical Methods in the Applied Sciences. 38(7), pp. 1225-1246. ISSN 0170-4214. eISSN 1099-1476. Available under: doi: 10.1002/mma.3140
@article{Pokojovy2015stabi-39715, title={On stability of hyperbolic thermoelastic Reissner–Mindlin–Timoshenko plates}, year={2015}, doi={10.1002/mma.3140}, number={7}, volume={38}, issn={0170-4214}, journal={Mathematical Methods in the Applied Sciences}, pages={1225--1246}, author={Pokojovy, Michael} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39715"> <dc:creator>Pokojovy, Michael</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:title>On stability of hyperbolic thermoelastic Reissner–Mindlin–Timoshenko plates</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39715"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T09:57:35Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T09:57:35Z</dc:date> <dcterms:issued>2015</dcterms:issued> <dc:contributor>Pokojovy, Michael</dc:contributor> <dcterms:abstract xml:lang="eng">In the present article, we consider a thermoelastic plate of Reissner–Mindlin–Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absence of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, and so on. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending component is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovskiĭ operator for irrotational vector fields, which we discuss in the appendix.</dcterms:abstract> </rdf:Description> </rdf:RDF>