A Note on the Hyperbolicity Cone of the Specialized Vámos Polynomial

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

KUMMER, Mario, 2016. A Note on the Hyperbolicity Cone of the Specialized Vámos Polynomial. In: Acta Applicandae Mathematicae. 144(1), pp. 11-15. ISSN 0167-8019. eISSN 1572-9036. Available under: doi: 10.1007/s10440-015-0036-z

@article{Kummer2016-08Hyper-39713, title={A Note on the Hyperbolicity Cone of the Specialized Vámos Polynomial}, year={2016}, doi={10.1007/s10440-015-0036-z}, number={1}, volume={144}, issn={0167-8019}, journal={Acta Applicandae Mathematicae}, pages={11--15}, author={Kummer, Mario} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39713"> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T09:47:02Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T09:47:02Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>A Note on the Hyperbolicity Cone of the Specialized Vámos Polynomial</dcterms:title> <dc:creator>Kummer, Mario</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2016-08</dcterms:issued> <dcterms:abstract xml:lang="eng">The specialized Vámos polynomial is a hyperbolic polynomial of degree four in four variables with the property that none of its powers admits a definite determinantal representation. We will use a heuristic method to prove that its hyperbolicity cone is a spectrahedron.</dcterms:abstract> <dc:contributor>Kummer, Mario</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39713"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account