A Note on the Hyperbolicity Cone of the Specialized Vámos Polynomial

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

KUMMER, Mario, 2016. A Note on the Hyperbolicity Cone of the Specialized Vámos Polynomial. In: Acta Applicandae Mathematicae. 144(1), pp. 11-15. ISSN 0167-8019. eISSN 1572-9036. Available under: doi: 10.1007/s10440-015-0036-z

@article{Kummer2016-08Hyper-39713, title={A Note on the Hyperbolicity Cone of the Specialized Vámos Polynomial}, year={2016}, doi={10.1007/s10440-015-0036-z}, number={1}, volume={144}, issn={0167-8019}, journal={Acta Applicandae Mathematicae}, pages={11--15}, author={Kummer, Mario} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39713"> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T09:47:02Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T09:47:02Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>A Note on the Hyperbolicity Cone of the Specialized Vámos Polynomial</dcterms:title> <dc:creator>Kummer, Mario</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2016-08</dcterms:issued> <dcterms:abstract xml:lang="eng">The specialized Vámos polynomial is a hyperbolic polynomial of degree four in four variables with the property that none of its powers admits a definite determinantal representation. We will use a heuristic method to prove that its hyperbolicity cone is a spectrahedron.</dcterms:abstract> <dc:contributor>Kummer, Mario</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39713"/> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto