Interactive Ambiguity Resolution of Named Entities in Fictional Literature

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:1fc0a1997a2119c70d2436cbf47f9af7

STOFFEL, Florian, Wolfgang JENTNER, Michael BEHRISCH, Johannes FUCHS, Daniel KEIM, 2017. Interactive Ambiguity Resolution of Named Entities in Fictional Literature. Eurographics Conference on Visualization (EuroVis) 2017. Barcelona, 12. Jun 2017 - 16. Jun 2017. In: HEER, Jeffrey, ed. and others. EuroVis 2017 Eurographics / IEEE VGTC Conference on Visualization 2017. Eurographics Conference on Visualization (EuroVis) 2017. Barcelona, 12. Jun 2017 - 16. Jun 2017, pp. 189-200. ISSN 0167-7055. eISSN 1467-8659

@inproceedings{Stoffel2017-07-04Inter-39654, title={Interactive Ambiguity Resolution of Named Entities in Fictional Literature}, year={2017}, doi={10.1111/cgf.13179}, number={36,3}, issn={0167-7055}, series={Computer Graphics Forum}, booktitle={EuroVis 2017 Eurographics / IEEE VGTC Conference on Visualization 2017}, pages={189--200}, editor={Heer, Jeffrey}, author={Stoffel, Florian and Jentner, Wolfgang and Behrisch, Michael and Fuchs, Johannes and Keim, Daniel} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39654"> <dc:contributor>Fuchs, Johannes</dc:contributor> <dcterms:title>Interactive Ambiguity Resolution of Named Entities in Fictional Literature</dcterms:title> <dc:contributor>Stoffel, Florian</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Keim, Daniel</dc:contributor> <dc:creator>Fuchs, Johannes</dc:creator> <dc:contributor>Behrisch, Michael</dc:contributor> <dc:contributor>Jentner, Wolfgang</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-26T07:56:49Z</dc:date> <dcterms:abstract xml:lang="eng">Named entity recognition (NER) denotes the task to detect entities and their corresponding classes, such as person or location, in unstructured text data. For most applications, state of the art NER software is producing reasonable results. However, as a consequence of the methodological limitations and the well-known pitfalls when analyzing natural language data, the NER results are likely to contain ambiguities. In this paper, we present an interactive NER ambiguity resolution technique, which enables users to create (post-processing) rules for named entity recognition data based on the content and entity context of the analyzed documents. We specifically address the problem that in use-cases where ambiguities are problematic, such as the attribution of fictional characters with traits, it is often unfeasible to train models on custom data to improve state of the art NER software. We derive an iterative process model for improving NER results, show an interactive NER ambiguity resolution prototype, illustrate our approach with contemporary literature, and discuss our work and future research.</dcterms:abstract> <dc:creator>Keim, Daniel</dc:creator> <dc:creator>Jentner, Wolfgang</dc:creator> <dcterms:rights rdf:resource="http://nbn-resolving.de/urn:nbn:de:bsz:352-20150914100631302-4485392-8"/> <dc:creator>Behrisch, Michael</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39654"/> <dc:creator>Stoffel, Florian</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-26T07:56:49Z</dcterms:available> <dcterms:issued>2017-07-04</dcterms:issued> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto